

 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA SL Content Language Specification 5

 6

Document title FIPA SL Content Language Specification
Document number SC00008I Document source FIPA TC Communication
Document status Standard Date of this status 2002/12/03
Supersedes FIPA00003
Contact fab@fipa.org
Change history See Informative Annex B — ChangeLog

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

© 1996-2002 Foundation for Intelligent Physical Agents 18
http://www.fipa.org/ 19
Geneva, Switzerland 20

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

ii

Foreword 21

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 22
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-23
based applications. This occurs through open collaboration among its member organizations, which are companies and 24
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 25
and intends to contribute its results to the appropriate formal standards bodies where appropriate. 26

The members of FIPA are individually and collectively committed to open competition in the development of agent-27
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 28
partnership, governmental body or international organization without restriction. In particular, members are not bound to 29
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 30
participation in FIPA. 31

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 32
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process 33
of specification may be found in the FIPA Document Policy [f-out-00000] and the FIPA Specifications Policy [f-out-34
00003]. A complete overview of the FIPA specifications and their current status may be found on the FIPA Web site. 35

FIPA is a non-profit association registered in Geneva, Switzerland. As of June 2002, the 56 members of FIPA 36
represented many countries worldwide. Further information about FIPA as an organization, membership information, 37
FIPA specifications and upcoming meetings may be found on the FIPA Web site at http://www.fipa.org/. 38

iii

Contents 39

1 Scope...1 40
2 Grammar FIPA SL Concrete Syntax ...2 41

2.1 Lexical Definitions ..3 42
3 Notes on FIPA SL Semantics ..5 43

3.1 Grammar Entry Point: FIPA SL Content Expression..5 44
3.2 Well-Formed Formulas...5 45
3.3 Atomic Formula ..6 46
3.4 Terms ...7 47
3.5 Referential Operators...7 48

3.5.1 Iota ..7 49
3.5.2 Any ..9 50
3.5.3 All ..10 51

3.6 Functional Terms ...11 52
3.7 Result Predicate...12 53
3.8 Actions and Action Expressions...12 54
3.9 Notes on the Grammar Rules ..12 55
3.10 Representation of Time..13 56

4 Reduced Expressivity Subsets of FIPA SL..14 57
4.1 FIPA SL0: Minimal Subset ...14 58
4.2 FIPA SL1: Propositional Form..15 59
4.3 FIPA SL2: Decidability Restrictions..16 60

5 References ..19 61
6 Informative Annex A — Syntax and Lexical Notation ..20 62
7 Informative Annex B — ChangeLog ..21 63

7.1 2002/11/01 - version H by TC X2S ..21 64
7.2 2002/12/03 - version I by FIPA Architecture Board..21 65

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

 1

1 Scope 66

This specification defines a concrete syntax for the FIPA Semantic Language (SL) content language. This syntax and 67
its associated semantics are suggested as a candidate content language for use in conjunction with the FIPA Agent 68
Communication Language (see [FIPA00037]). In particular, the syntax is defined to be a sub-grammar of the very 69
general s-expression syntax. 70
 71

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

2

2 Grammar FIPA SL Concrete Syntax 72

This content language is denoted by the normative constant fipa-sl in the :language parameter of an ACL 73
message. See Section 6 for an explanation of the used syntactic notation. 74
 75
Content = "(" ContentExpression+ ")". 76
 77
ContentExpression = IdentifyingExpression 78
 | ActionExpression 79
 | Proposition. 80
 81
Proposition = Wff. 82
 83
Wff = AtomicFormula 84
 | "(" UnaryLogicalOp Wff ")" 85
 | "(" BinaryLogicalOp Wff Wff ")" 86
 | "(" Quantifier Variable Wff ")" 87
 | "(" ModalOp Agent Wff ")" 88
 | "(" ActionOp ActionExpression ")" 89
 | "(" ActionOp ActionExpression Wff ")". 90
 91
UnaryLogicalOp = "not". 92
 93
BinaryLogicalOp = "and" 94
 | "or" 95
 | "implies" 96
 | "equiv". 97
 98
AtomicFormula = PropositionSymbol 99
 | "(" BinaryTermOp TermOrIE TermOrIE ")" 100
 | "(" PredicateSymbol TermOrIE+ ")" 101
 | "true" 102
 | "false". 103
 104
BinaryTermOp = "=" 105
 | "result". 106
 107
Quantifier = "forall" 108
 | "exists". 109
 110
ModalOp = "B" 111
 | "U" 112
 | "PG" 113
 | "I". 114
 115
ActionOp = "feasible" 116
 | "done". 117
 118
TermOrIE1 = Term 119
 | IdentifyingExpression. 120
 121
Term = Variable 122
 | FunctionalTerm 123
 | ActionExpression 124
 | Constant 125
 | Sequence 126
 | Set. 127
 128
IdentifyingExpression = "(" ReferentialOperator TermOrIE Wff ")". 129
 130

1 Note that this grammar rule is used to group and represent both Terms and Identifying Expressions.

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

3

ReferentialOperator = "iota" 131
 | "any" 132
 | "all". 133
 134
FunctionalTerm = "(" FunctionSymbol TermOrIE* ")" 135
 | "(" FunctionSymbol Parameter* ")". 136
 137
Constant = NumericalConstant 138
 | String 139
 | DateTime. 140
 141
NumericalConstant = Integer 142
 | Float. 143
 144
Variable = VariableIdentifier. 145
 146
ActionExpression = "(" "action" Agent TermOrIE ")" 147
 | "(" "|" ActionExpression ActionExpression ")" 148
 | "(" ";" ActionExpression ActionExpression ")". 149
 150
PropositionSymbol = String. 151
 152
PredicateSymbol = String. 153
 154
FunctionSymbol = String. 155
 156
Agent = TermOrIE. 157
 158
Sequence = "(" "sequence" TermOrIE* ")". 159
 160
Set = "(" "set" TermOrIE* ")". 161
 162
Parameter = ParameterName ParameterValue. 163
 164
ParameterValue = TermOrIE. 165
 166
 167

2.1 Lexical Definitions 168

All white space, tabs, carriage returns and line feeds between tokens should be skipped by the lexical analyser. See 169
Section 6 for an explanation of the used notation. 170
 171
String = Word 172
 | ByteLengthEncodedString 173
 | StringLiteral. 174
 175
ByteLengthEncodedString = "#" DecimalLiteral+ "\"" <byte sequence>. 176
 177
Word = [~ "\0x00" - "\0x20", "(", ")", "#", "0" - "9", ":", "-", "?"] 178
 [~ "\0x00" - "\0x20", "(", ")"]*. 179
 180
ParameterName = ":" String. 181
 182
VariableIdentifier = "?" String. 183
 184
Sign = ["+" , "-"]. 185
 186
Integer = Sign? DecimalLiteral+ 187
 | Sign? "0" ["x", "X"] HexLiteral+. 188
 189
Dot = "." 190
 191
Float = Sign? FloatMantissa FloatExponent? 192

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

4

 | Sign? DecimalLiteral+ FloatExponent. 193
 194
FloatMantissa = DecimalLiteral+ Dot DecimalLiteral* 195
 | DecimalLiteral* Dot DecimalLiteral+. 196
 197
FloatExponent = Exponent Sign? DecimalLiteral+. 198
 199
Exponent = ["e","E"]. 200
 201
DecimalLiteral = ["0" - "9"]. 202
 203
HexLiteral = ["0" - "9", "A" - "F", "a" - "f"]. 204
 205
StringLiteral = "\""([~ "\""] 206
 | "\\\"")*"\"". 207
 208
DateTime = Sign? Year Month Day "T" Hour Minute 209
 Second MilliSecond TypeDesignator?. 210
 211
Year = DecimalLiteral DecimalLiteral DecimalLiteral DecimalLiteral. 212
 213
Month = DecimalLiteral DecimalLiteral. 214
 215
Day = DecimalLiteral DecimalLiteral. 216
 217
Hour = DecimalLiteral DecimalLiteral. 218
 219
Minute = DecimalLiteral DecimalLiteral. 220
 221
Second = DecimalLiteral DecimalLiteral. 222
 223
MilliSecond = DecimalLiteral DecimalLiteral DecimalLiteral. 224
 225
TypeDesignator = ["a" - "z" , "A" – "Z"]. 226
 227

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

5

3 Notes on FIPA SL Semantics 228

This section contains explanatory notes on the intended semantics of the constructs introduced in above. 229
 230

3.1 Grammar Entry Point: FIPA SL Content Expression 231

An FIPA SL content expression may be used as the content of an ACL message. There are three cases: 232
 233
• A proposition, which may be assigned a truth value in a given context. Precisely, it is a well-formed formula (Wff) 234

using the rules described in the Wff production. A proposition is used in the inform communicative act (CA) and 235
other CAs derived from it. 236

 237
• An action, which can be performed. An action may be a single action or a composite action built using the 238

sequencing and alternative operators. An action is used as a content expression when the act is request and 239
other CAs derived from it. 240

 241
• An identifying reference expression (IRE), which identifies an object in the domain. This is the Referential operator 242

and is used in the inform-ref macro act and other CAs derived from it. 243
 244
Other valid content expressions may result from the composition of the above basic cases. For instance, an action-245
condition pair (represented by an ActionExpression followed by a Wff) is used in the propose act; an action-246
condition-reason triplet (represented by an ActionExpression followed by two Wffs) is used in the reject-247
proposal act. These are used as arguments to some ACL CAs in [FIPA00037]. 248
 249

3.2 Well-Formed Formulas 250

A well-formed formula is constructed from an atomic formula, whose meaning will be determined by the semantics of 251
the underlying domain representation or recursively by applying one of the construction operators or logical connectives 252
described in the Wff grammar rule. These are: 253
 254
• (not <Wff>) 255

Negation. The truth value of this expression is false if Wff is true. Otherwise it is true. 256
 257
• (and <Wff0> <Wff1>) 258

Conjunction. This expression is true iff2 well-formed formulae Wff0 and Wff1 are both true, otherwise it is false. 259
 260

• (or <Wff0> <Wff1>) 261
Disjunction. This expression is false iff well-formed formulae Wff0 and Wff1 are both false, otherwise it is true. 262
 263

• (implies <Wff0> <Wff1>) 264
Implication. This expression is true if either Wff0 is false or alternatively if Wff0 is true and Wff1 is true. Otherwise 265
it is false. The expression corresponds to the standard material implication connective Wff0 Wff1. 266

 267
• (equiv <Wff0> <Wff1>) 268

Equivalence. This expression is true if either Wff0 is true and Wff1 is true, or alternatively if Wff0 is false and 269
Wff1 is false. Otherwise it is false. 270

 271
• (forall <variable> <Wff>) 272

Universal quantification. The quantified expression is true if Wff is true for every value of value of the quantified 273
variable. 274
 275

• (exists <variable> <Wff>) 276

2 If and only if.

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

6

Existential quantification. The quantified expression is true if there is at least one value for the variable for which 277
Wff is true. 278
 279

• (B <agent> <expression>) 280
Belief. It is true that agent believes that expression is true. 281
 282

• (U <agent> <expression>) 283
Uncertainty. It is true that agent is uncertain of the truth of expression. Agent neither believes expression 284
nor its negation, but believes that expression is more likely to be true than its negation. 285

 286
• (I <agent> <expression>) 287

Intention. It is true that agent intends that expression becomes true and will plan to bring it about. 288
 289

• (PG <agent> <expression>) 290
Persistent goal. It is true that agent holds a persistent goal that expression becomes true, but will not 291
necessarily plan to bring it about. 292
 293

• (feasible <ActionExpression> <Wff>) 294
It is true that ActionExpression (or, equivalently, some event) can take place and just afterwards Wff will be 295
true. 296
 297

• (feasible <ActionExpression>) 298
Same as (feasible <ActionExpression> true). 299
 300

• (done <ActionExpression> <Wff>) 301
It is true that ActionExpression (or, equivalently, some event) has just taken place and just before that Wff was 302
true. 303
 304

• (done <ActionExpression>) 305
Same as (done <ActionExpression> true). 306

 307

3.3 Atomic Formula 308

The atomic formula represents an expression which has a truth value in the language of the domain of discourse. Three 309
forms are defined: 310
 311
• A given propositional symbol may be defined in the domain language, which is either true or false, 312
 313
• Two terms may or may not be equal under the semantics of the domain language, or, 314
 315
• Some predicate is defined over a set of zero or more arguments, each of which is a term. 316
 317
The FIPA SL representation does not define a meaning for the symbols in atomic formulae: this is the responsibility of 318
the domain language representation and ontology. Several forms are defined: 319
 320
• true false 321

These symbols represent the true proposition and the false proposition. 322
 323
• (= Term1 Term2) 324

Term1 and Term2 denote the same object under the semantics of the domain. 325
 326
Other predicates may be defined over a set of arguments, each of which is a term, by using the (PredicateSymbol 327
Term+) production. 328
 329

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

7

The FIPA SL representation does not define a meaning for other symbols in atomic formulae: this is the responsibility of 330
the domain language representation and the relative ontology. 331
 332

3.4 Terms 333

Terms are either themselves atomic (constants and variables) or recursively constructed as a functional term in which a 334
functor is applied to zero or more arguments. Again, FIPA SL only mandates a syntactic form for these terms. With 335
small number of exceptions (see below), the meanings of the symbols used to define the terms are determined by the 336
underlying domain representation. 337
 338
Note that, as mentioned above, no legal well-formed expression contains a free variable, that is, a variable not declared 339
in any scope within the expression. Scope introducing formulae are the quantifiers (forall, exists) and the 340
reference operators iota, any and all. Variables may only denote terms, not well-formed formulae. 341
 342

3.5 Referential Operators 343

3.5.1 Iota 344

• (iota <term> <formula>) 345
The iota operator introduces a scope for the given expression (which denotes a term), in which the given 346
identifier, which would otherwise be free, is defined. An expression containing a free variable is not a well-formed 347
FIPA SL expression. The expression (iota x (P x)) may be read as “the x such that P [is true] of x”. The iota 348
operator is a constructor for terms which denote objects in the domain of discourse. 349
 350
Notice that, unlike a term, an identifying expression can have different interpretations by different agents because 351
its formal definition depends on the KB. 352

 353
• Formal Definition 354

A iota expression can only be evaluated with respect to a given theory. Suppose KB is a knowledge base such 355
that T (KB) is the theory generated from KB by a given reasoning mechanism. Formally, ι(τ, φ)=θτ iff θτ is a term 356
that belongs to the set Σ={θτ: θφ∈T (KB)} and Σ is a singleton; or ι(τ, φ) is undefined if Σ is not a singleton. In this 357
definition θ is a most general variable substitution, θτ is the result of applying θ to τ, and θφ is the result of applying 358
θ to φ. This implies that a failure occurs if no object or more than one object satisfies the condition specified in the 359
iota operator. 360
 361
If ι(τ, φ) is undefined then any term, identifying expression or well-formed formula containing ι(τ, φ) is also 362
undefined. 363

 364
• Example 1 365

This example depicts an interaction between agent A and B that makes use of the iota operator, where agent A is 366
supposed to have the following knowledge base KB={P(A), Q(1, A), Q(1, B)}. 367

 368
(query-ref 369
 :sender (agent-identifier :name B) 370

 :receiver (set (agent-identifier :name A)) 371
 :content 372
 "((iota ?x (p ?x)))" 373
 :language fipa-sl 374
 :reply-with query1) 375
 376
(inform 377
 :sender (agent-identifier :name A) 378
 :receiver (set (agent-identifier :name B) 379
 :content 380
 " ((= (iota ?x (p ?x)) a)) " 381
 :language fipa-sl 382

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

8

 :in-reply-to query1) 383
 384
The only object that satisfies proposition P(x) is a, therefore, the query-ref message is replied by the inform 385
message as shown. 386
 387

• Example 2 388
This example shows another successful interaction but more complex than the previous one. 389
 390
(query-ref 391
 :sender (agent-identifier :name B) 392
 :receiver (set (agent-identifier :name A)) 393
 :content 394
 "((iota ?x (q ?x ?y)))" 395
 :language fipa-sl 396
 :reply-with query2) 397
 398
(inform 399
 :sender (agent-identifier :name A) 400
 :receiver (set (agent-identifier :name B)) 401
 :content 402
 "((= (iota ?x (q ?x ?y)) 1))" 403
 :language fipa-sl 404
 :in-reply-to query2) 405
 406
The most general substitutions θ such that θQ(x, y) can be derived from KB are θ1={x/1, y/A} and θ2={x/1, y/B}. 407
Therefore, the set Σ={θτ: θφ∈T(KB)}={{x/1, y/A}x, {x/1, y/B}x }={1} is a singleton and hence (iota ?x (q ?x ?y)) 408
represents the object 1. 409
 410

• Example 3 411
Finally, this example shows an unsuccessful interaction using the iota operator. In this case, agent A cannot 412
evaluate the iota expression and therefore a failure message is returned to agent B 413
 414
(query-ref 415
 :sender (agent-identifier :name B) 416
 :receiver (set (agent-identifier :name A)) 417
 :content 418
 "((iota ?y (q ?x ?y)))" 419
 :language fipa-sl 420
 :reply-with query3) 421
 422
(failure 423

 :sender (agent-identifier :name A) 424
 :receiver (set (agent-identifier :name B)) 425
 :content 426
 "((action (agent-identifier :name A) 427
 (inform-ref 428
 :sender (agent-identifier :name A) 429
 :receiver (set (agent-identifier :name B)) 430
 :content 431
 \"((iota ?y (q ?x ?y)))\" 432
 :language fipa-sl 433
 :in-reply-to query3))" 434
 more-than-one-answer) 435
 :language fipa-sl 436
 :in-reply-to query3) 437

 438
The most general substitutions that satisfy Q(x, y) are θ1={x/1, y/a} and θ2={x/1, y/b}, therefore, the set Σ={θτ: 439
θφ∈T(KB)}={{x/1, y/A}y, {x/1, y/B}y}={A, B}, which is not a singleton. This means that the iota expression used in 440
this interaction is not defined. 441

 442

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

9

3.5.2 Any 443

• (any <term> <formula>) 444
The any operator is used to denote any object that satisfies the proposition represented by formula. 445
 446
Notice that, unlike a term, an identifying expression can have different interpretations by different agents because 447
its formal definition depends on the KB. 448

 449
• Formal Definition 450

An any expression can only be evaluated with respect to a given theory. Suppose KB is a knowledge base such 451
that T(KB) is the theory generated from KB by a given reasoning mechanism. Formally, any(τ, φ)=θτ iff θτ is a term 452
that belongs to the set Σ={θτ: θφ∈T(KB)}; or any(τ, φ) is undefined if Σ is the empty set. In this definition θ is a most 453
general variable substitution, θτ is the result of applying θ to τ, and θφ is the result of applying θ to φ. 454
 455
If the set Σ is empty then any term, identifying expression or well-formed formula containing any(τ, φ) is undefined. 456
 457
If the set Σ is not empty, then for any formula ψ containing any(τ, φ) let ψ' be the formula obtained from ψ by 458
replacing any(τ, φ) with a variable x (not occurring in ψ) and let s_k be a new Skolem constant. Then ψ is true when 459
{x/s_k}ψ' element_of T(KB union {τ/s_k}φ), ψ is false when {x/s_k}not(ψ’) element_of T(KB union {τ/s_k}φ), and 460
otherwise ψ is undefined. 461
 462
In other words if ψ contains any(τ, φ), ψ is true if a modified form of ψ obtained by replacing the any expression in it 463
with a new constant s_k can be inferred based on the assumption that phi holds of s_k. ψ is false if not(ψ) inferred 464
in a similar way. This definition is needed to avoid the following contradiction: 465
 466
(implies 467
 (and (= Stephen (any ?x (fipa-member ?x))) 468
 (= Farooq (any ?x (fipa-member ?x)))) 469
 (= Stephen Farooq)) 470

 471
This definition implies that failures only occur if there are no objects satisfying the condition specified as the second 472
argument of the any operator. 473
 474
If any(τ, φ) is undefined then any term, identifying expression or well-formed formula containing any(τ, φ) is also 475
undefined. 476

 477
• Example 4 478

Assuming that agent A has the following knowledge base KB={P(A), Q(1, A), Q(1, B)}, this example shows a 479
successful interaction with agent A using the any operator. 480

 481
(query-ref 482
 :sender (agent-identifier :name B) 483
 :receiver (set (agent-identifier :name A)) 484
 :content 485
 "((any (sequence ?x ?y) (q ?x ?y)))" 486
 :language fipa-sl 487
 :reply-with query1) 488
 489
(inform 490
 :sender (agent-identifier :name A) 491
 :receiver (set (agent-identifier :name B)) 492
 :content 493
 "((= (any (sequence ?x ?y) (q ?x ?y)) (sequence 1 a)))" 494
 :language fipa-sl 495
 :in-reply-to query1) 496
 497

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

10

The most general substitutions θ such that θQ(x, y) can be derived from KB are {x/1, y/A} and {x/1, y/B}, therefore 498
Σ={θSequence(x, y): θQ(x, y)∈T(KB)}={Sequence(1, A), Sequence(1, B)}. Using this set, agent A chooses the first 499
element of Σ as the appropriate answer to agent B. 500

 501
• Example 5 502

This example shows an unsuccessful interaction with agent A, using the any operator. 503
 504
(query-ref 505
 :sender (agent-identifier :name B) 506
 :receiver (set (agent-identifier :name A)) 507
 :content 508
 "((any ?x (r ?x)))" 509
 :language fipa-sl 510
 :reply-with query2) 511
 512
(failure 513
 :sender (agent-identifier :name A) 514
 :receiver (set (agent-identifier :name B)) 515
 :content 516
 "((action (agent-identifier :name A) 517
 (inform-ref 518
 :sender (agent-identifier :name A) 519
 :receiver (set (agent-identifier :name B)) 520
 :content 521
 \"((any ?x (r ?x)))\" 522
 :language fipa-sl 523
 :in-reply-to query2)) 524
 (unknown-predicate r))" 525
 :language fipa-sl 526
 :in-reply-to query2) 527
 528
Since agent A does not know the r predicate, the answer to the query that had been sent by agent B cannot be 529
determined, therefore a failure message is sent to agent B from agent A. The failure message specifies the failure’s 530
reason (that is, unknown-predicate r) 531

 532

3.5.3 All 533

• (all <term> <formula>) 534
The all operator is used to denote the set of all objects that satisfy the proposition represented by formula. 535
 536
Notice that, unlike a term, an identifying expression can have different interpretations by different agents because 537
its formal definition depends on the KB. 538

 539
• Formal Definition 540

An all expression can only be evaluated with respect to a given theory. Suppose KB is a knowledge base such 541
that T(KB) is the theory generated from KB by a given reasoning mechanism. Formally, all(τ, φ)={θτ: θφ∈T(KB)}. 542
Notice that all(τ, φ) may be a singleton or even an empty set. In this definition θ is a most general variable 543
substitution, θτ is the result of applying θ to τ, and θφ is the result of applying θ to φ. 544
 545
If no objects satisfy the condition specified as the second argument of the all operator, then the identifying 546
expression denotes an empty set. 547

 548
• Example 6 549

Suppose agent A has the following knowledge base KB={P(A), Q(1, A), Q(1, B)}. This example shows a successful 550
interaction between agent A and B that make use of the all operator. 551
 552
(query-ref 553
 :sender (agent-identifier :name B) 554

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

11

 :receiver (set (agent-identifier :name A)) 555
 :content 556
 "((all (sequence ?x ?y) (q ?x ?y)))" 557
 :language fipa-sl 558
 :reply-with query1) 559
 560
(inform 561
 :sender (agent-identifier :name A) 562
 :receiver (set (agent-identifier :name B)) 563
 :content 564
 "((= (all (sequence ?x ?y) (q ?x ?y)) (set(sequence 1 a)(sequence 1 b))))" 565
 :language fipa-sl 566
 :in-reply-to query1) 567
 568
The set of the most general substitutions θ such that θQ(x, y) can be derived from KB is {{x/1, y/A}, {x/1, y/B}}, 569
therefore all(Sequence(x, y), Q(x, y))={Sequence(1, A), Sequence(1, B)}. 570
 571

• Example 7 572
Following Example 6, if there is no possible answer to a query making use of the all operator, then the agent 573
should return the empty set. 574
 575
(query-ref 576
 :sender (agent-identifier :name B) 577
 :receiver (set (agent-identifier :name A)) 578
 :content 579
 "((all ?x (q ?x c)))" 580
 :language fipa-sl 581
 :reply-with query2) 582
 583
(inform 584
 :sender (agent-identifier :name A) 585
 :receiver (set (agent-identifier :name B)) 586
 :content 587
 "((= (all ?x (q ?x c))(set)))" 588
 :language fipa-sl 589
 :in-reply-to query2) 590
 591
Since there is no possible substitution for x such that Q(x, C) can be derived from KB, then all(x, Q(x, c))={}. In this 592
interaction the term (set) represents the empty set. 593

 594

3.6 Functional Terms 595

A functional term refers to an object via a functional relation (referred by the FunctionSymbol) with other objects (that 596
is, the terms or parameters), rather than using the direct name of that object, for example, (fatherOf Jesus) rather 597
than God. 598
 599
Two syntactical forms can be used to express a functional term. In the first form the functional symbol is followed by a 600
list of terms that are the arguments of the function symbol. The semantics of the arguments is position-dependent, for 601
example, (divide 10 2) where 10 is the dividend and 2 is the divisor. In the second form each argument is preceded 602
by its name, for example, (divide :dividend 10 :divisor 2). The encoder is required to adopt the following 603
criteria to select which form to use in order to represent a functional term. The first form, that is, the position-dependent 604
form, should be used to encode all those functional terms for which the ontology does not specify the names of the 605
parameters (for example, all the functions of the fipa-agent-management ontology). The second form, that is, the 606
parameter-name dependent form, must be used to encode all those functional terms for which the ontology does 607
specify the names of the parameters but not their position (for example, all the object descriptions of the fipa-agent-608
management ontology). This second form is particularly appropriate to represent descriptions where the function 609
symbol should be interpreted as the constructor of an object, while the parameters represent the attributes of the object. 610
 611
The following is an example of an object, instance of a vehicle class: 612

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

12

 613
(vehicle 614
 :colour red 615
 :max-speed 100 616
 :owner (Person 617
 :name Luis 618
 :nationality Portuguese)) 619
 620
Some ontologies may decide to give a description of some concepts only in one or both of these two forms, that is by 621
specifying, or not, a default order to the arguments of each function in the domain of discourse. How this order is 622
specified is outside the scope of this specification. 623
 624
Functional terms can be constructed by a domain functor applied to zero or more terms. 625
 626

3.7 Result Predicate 627

A common need is to determine the result of performing an action or evaluating a term. To facilitate this operation, a 628
standard predicate result, of arity two, is introduced to the language. result/2 has the declarative meaning that the 629
result of evaluating a term, or equivalently of performing an action, encoded by the first argument term, is the second 630
argument term. However, it is expected that this declarative semantics will be implemented in a more efficient, 631
operational way in any given FIPA SL interpreter. 632
 633
A typical use of the result predicate is with a variable scoped by iota, giving an expression whose meaning is, for 634
example, ”the x which is the result of agent i performing act”: 635
 636
(iota x (result (action i act) x))) 637
 638

3.8 Actions and Action Expressions 639

Action expressions are a special subset of terms. An action itself is introduced by the keyword action and comprises 640
the agent of the action (that is, an identifier representing the agent performing the action) and a term denoting the action 641
which is [to be] performed. 642
 643
Notice that a specific type of action is an ACL communicative act (CA). When expressed in FIPA SL, syntactically an 644
ACL communicative act is an action where the agent of the action is the sender of the CA, and the term denotes the 645
CA including all its parameters where the performative should be used as a function symbol, as referred by the used 646
ontology. Example 5 includes an example of an ACL CA, encoded as a String, whose content embeds another CA. 647
 648
Two operators are used to build terms denoting composite CAs: 649
 650
• The sequencing operator (;) denotes a composite act in which the first action (represented by the first operand) is 651

followed by the second action, and, 652
 653
• The alternative operator (|) denotes a composite act in which either the first action occurs, or the second, but not 654

both. 655
 656

3.9 Notes on the Grammar Rules 657

1. The standard definitions for integers and floating point are assumed. However, due to the necessarily unpredictable 658
nature of cross-platform dependencies, agents should not make strong assumptions about the precision with which 659
another agent is able to represent a given numerical value. FIPA SL assumes only 32-bit representations of both 660
integers and floating point numbers. Agents should not exchange message contents containing numerical values 661
requiring more than 32 bits to encode precisely, unless some prior arrangement is made to ensure that this is valid. 662

 663
2. All keywords are case-insensitive. 664

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

13

 665
3. A length encoded string is a context sensitive lexical token. Its meaning is as follows: the message envelope of the 666

token is everything from the leading # to the separator " (inclusive). Between the markers of the message envelope 667
is a decimal number with at least one digit. This digit then determines that exactly that number of 8-bit bytes are to 668
be consumed as part of the token, without restriction. It is a lexical error for less than that number of bytes to be 669
available. 670

 671
4. Note that not all implementations of the ACC (see [FIPA00067]) will support the transparent transmission of 8-bit 672

characters. It is the responsibility of the agent to ensure, by reference to internal API of the ACC, that a given 673
channel is able to faithfully transmit the chosen message encoding. 674

 675
5. Strings encoded in accordance with [ISO2022] may contain characters which are otherwise not permitted in the 676

definition of Word. These characters are ESC (0x1B), SO (0x0E) and SI (0x0F). This is due to the complexity that 677
would result from including the full [ISO2022] grammar in the above EBNF description. Hence, despite the basic 678
description above, a word may contain any well-formed [ISO2022] encoded character, other (representations of) 679
parentheses, spaces, or the # character. Strings must be enclosed between quote symbols. If the quote symbol 680
itself needs to be part of the String, then it must be escaped by a \ character. 681

 682
6. The format for time tokens is defined in section 3.10. 683
 684
7. An agent is represented by its agent-identifier using the standard format from [FIPA00023]. 685
 686

3.10 Representation of Time 687

Time tokens are based on [ISO8601], with extension for relative time and millisecond durations. Time expressions may 688
be absolute, or relative. Relative times are distinguished by the sign character + or - appearing as the first character in 689
the token. If no type designator is given, the local time zone is then used. The type designator for UTC is the character 690
Z; UTC is preferred to prevent time zone ambiguities. Note that years must be encoded in four digits. As an example, 691
8:30 am on 15th April, 1996 local time would be encoded as: 692
 693
19960415T083000000 694
 695
The same time in UTC would be: 696
 697
19960415T083000000Z 698
 699
while one hour, 15 minutes and 35 milliseconds from now would be: 700
 701
+00000000T011500035 702
 703

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

14

4 Reduced Expressivity Subsets of FIPA SL 704

The FIPA SL definition given above is a very expressive language, but for some agent communication tasks it is 705
unnecessarily powerful. This expressive power has an implementation cost to the agent and introduces problems of the 706
decidability of modal logic. To allow simpler agents, or agents performing simple tasks, to do so with minimal 707
computational burden, this section introduces semantic and syntactic subsets of the full FIPA SL content language for 708
use by the agent when it is appropriate or desirable to do so. These subsets are defined by the use of profiles, that is, 709
statements of restriction over the full expressive power of FIPA SL. These profiles are defined in increasing order of 710
expressivity as FIPA-SL0, FIPA-SL1 and FIPA-SL2. 711
 712
Note that these subsets of FIPA SL, with additional ontological commitments (that is, the definition of domain predicates 713
and constants) are used in other FIPA specifications. 714
 715

4.1 FIPA SL0: Minimal Subset 716

Profile 0 is denoted by the normative constant fipa-sl0 in the language parameter of an ACL message. Profile 0 of 717
FIPA SL is the minimal subset of the FIPA SL content language. It allows the representation of actions, the 718
determination of the result a term representing a computation, the completion of an action and simple binary 719
propositions. The following defines the FIPA SL0 grammar: 720
 721
Content = "(" ContentExpression+ ")". 722
 723
ContentExpression = ActionExpression 724
 | Proposition. 725
 726
Proposition = Wff. 727
 728
Wff = AtomicFormula 729
 | "(" ActionOp ActionExpression ")". 730
 731
AtomicFormula = PropositionSymbol 732
 | "(" "result" Term Term ")" 733
 | "(" PredicateSymbol Term+ ")" 734
 | "true" 735
 | "false". 736
 737
ActionOp = "done". 738
 739
Term = Constant 740
 | Set 741
 | Sequence 742
 | FunctionalTerm 743
 | ActionExpression. 744
 745
ActionExpression = "(" "action" Agent Term ")". 746
 747
FunctionalTerm = "(" FunctionSymbol Term* ")" 748
 | "(" FunctionSymbol Parameter* ")". 749
 750
Parameter = ParameterName ParameterValue. 751
 752
ParameterValue = Term. 753
 754
Agent = Term. 755
 756
FunctionSymbol = String. 757
 758
PropositionSymbol = String. 759
 760
PredicateSymbol = String. 761

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

15

 762
Constant = NumericalConstant 763
 | String 764
 | DateTime. 765
 766
Set = "(" "set" Term* ")". 767
 768
Sequence = "(" "sequence" Term* ")". 769
 770
NumericalConstant = Integer 771
 | Float. 772
 773
The same lexical definitions described in Section 2.1 apply for FIPA SL0. 774
 775

4.2 FIPA SL1: Propositional Form 776

Profile 1 is denoted by the normative constant fipa-sl1 in the language parameter of an ACL message. Profile 1 of 777
FIPA SL extends the minimal representational form of FIPA SL0 by adding Boolean connectives to represent 778
propositional expressions. The following defines the FIPA SL1 grammar: 779
 780
Content = "(" ContentExpression+ ")". 781
 782
ContentExpression = ActionExpression 783
 | Proposition. 784
 785
Proposition = Wff. 786
 787
Wff = AtomicFormula 788
 | "(" UnaryLogicalOp Wff ")" 789
 | "(" BinaryLogicalOp Wff Wff ")" 790
 | "(" ActionOp ActionExpression ")". 791
 792
UnaryLogicalOp = "not". 793
 794
BinaryLogicalOp = "and" 795
 | "or". 796
 797
AtomicFormula = PropositionSymbol 798
 | "(" "result" Term Term ")" 799
 | "(" PredicateSymbol Term+ ")" 800
 | "true" 801
 | "false". 802
 803
ActionOp = "done". 804
 805
Term = Constant 806
 | Set 807
 | Sequence 808
 | FunctionalTerm 809
 | ActionExpression. 810
 811
ActionExpression = "(" "action" Agent Term ")". 812
 813
FunctionalTerm = "(" FunctionSymbol Term* ")" 814
 | "(" FunctionSymbol Parameter* ")". 815
 816
Parameter = ParameterName ParameterValue. 817
 818
ParameterValue = Term. 819
 820
Agent = Term. 821
 822

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

16

FunctionSymbol = String. 823
 824
PropositionSymbol = String. 825
 826
PredicateSymbol = String. 827
 828
Constant = NumericalConstant 829
 | String 830
 | DateTime. 831
 832
Set = "(" "set" Term* ")". 833
 834
Sequence = "(" "sequence" Term* ")". 835
 836
NumericalConstant = Integer 837
 | Float. 838
 839
The same lexical definitions described in Section 2.1 apply for FIPA SL1. 840
 841

4.3 FIPA SL2: Decidability Restrictions 842

Profile 2 is denoted by the normative constant fipa-sl2 in the language parameter of an ACL message. Profile 2 of 843
FIPA SL allows first order predicate and modal logic, but is restricted to ensure that it must be decidable. Well-known 844
effective algorithms exist that can derive whether or not an FIPA SL2 Wff is a logical consequence of a set of Wffs (for 845
instance KSAT and Monadic). The following defines the FIPA SL2 grammar: 846
 847
Content = "(" ContentExpression+ ")". 848
 849
ContentExpression = IdentifyingExpression 850
 | ActionExpression 851
 | Proposition. 852
 853
Proposition = PrenexExpression. 854
 855
Wff = AtomicFormula 856
 | "(" UnaryLogicalOp Wff ")" 857
 | "(" BinaryLogicalOp Wff Wff ")" 858
 | "(" ModalOp Agent PrenexExpression ")" 859
 | "(" ActionOp ActionExpression ")" 860
 | "(" ActionOp ActionExpression PrenexExpression ")". 861
 862
UnaryLogicalOp = "not". 863
 864
BinaryLogicalOp = "and" 865
 | "or" 866
 | "implies" 867
 | "equiv". 868
 869
AtomicFormula = PropositionSymbol 870
 | "(" "=" TermOrIE TermOrIE ")" 871
 | "(" "result" TermOrIE TermOrIE ")" 872
 | "(" PredicateSymbol TermOrIE+ ")" 873
 | "true" 874
 | "false". 875
 876
PrenexExpression = UnivQuantExpression 877
 | ExistQuantExpression 878
 | Wff. 879
 880
UnivQuantExpression = "(" "forall" Variable Wff ")" 881
 | "(" "forall" Variable UnivQuantExpression ")" 882
 | "(" "forall" Variable ExistQuantExpression ")". 883

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

17

 884
ExistQuantExpression = "(" "exists" Variable Wff ")" 885
 | "(" "exists" Variable ExistQuantExpression ")". 886
 887
TermOrIE = Term 888
 | IdentifyingExpression. 889
 890
Term = Variable 891
 | FunctionalTerm 892
 | ActionExpression 893
 | Constant 894
 | Sequence 895
 | Set. 896
 897
IdentifyingExpression = "(" ReferentialOp TermOrIE Wff ")". 898
 899
ReferentialOp = "iota" 900
 | "any" 901
 | "all". 902
 903
FunctionalTerm = "(" FunctionSymbol TermOrIE* ")" 904
 | "(" FunctionSymbol Parameter* ")". 905
 906
Parameter = ParameterName ParameterValue. 907
 908
ParameterValue = TermOrIE. 909
 910
ActionExpression = "(" "action" Agent TermOrIE ")" 911
 | "(" "|" ActionExpression ActionExpression ")" 912
 | "(" ";" ActionExpression ActionExpression ")". 913
 914
Variable = VariableIdentifier. 915
 916
Agent = TermOrIE. 917
 918
FunctionSymbol = String. 919
 920
Constant = NumericalConstant 921
 | String 922
 | DateTime. 923
 924
ModalOp = "B" 925
 | "U" 926
 | "PG" 927
 | "I". 928
 929
ActionOp = "feasible" 930
 | "done". 931
 932
PropositionSymbol = String. 933
 934
PredicateSymbol = String. 935
 936
Set = "(" "set" TermOrIE* ")". 937
 938
Sequence = "(" "sequence" TermOrIE* ")". 939
 940
NumericalConstant = Integer 941
 | Float. 942
 943
 944
The same lexical definitions described in Section 2.1 apply for FIPA SL2. 945
 946

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

18

The Wff production of FIPA SL2 no longer directly contains the logical quantifiers, but these are treated separately to 947
ensure only prefixed quantified formulas, such as: 948
 949
(forall ?x1 950
 (forall ?x2 951
 (exists ?y1 952
 (exists ?y2 953
 (Phi ?x1 ?x2 ?y1 ?y2))))) 954
 955
Where (Phi ?x1 ?x2 ?y1 ?y2) does not contain any quantifier. 956
 957
The grammar of FIPA SL2 still allows for quantifying-in inside modal operators. For example, the following formula is 958
still admissible under the grammar: 959
 960
(forall ?x1 961
 (or 962
 (B i (p ?x1)) 963
 (B j (q ?x1)))) 964
 965
It is not clear that formulae of this kind are decidable. However, changing the grammar to express this context 966
sensitivity would make the EBNF form above essentially unreadable. Thus, the following additional mandatory 967
constraint is placed on well-formed content expressions using FIPA SL2: Within the scope of an SLModalOperator 968
only closed formulas are allowed, that is, formulas without free variables. 969
 970

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

19

5 References 971

[FIPA00023] FIPA Agent Management Specification. Foundation for Intelligent Physical Agents, 2000. 972
http://www.fipa.org/specs/fipa00023/ 973

[FIPA00037] FIPA Agent Communication Language Overview. Foundation for Intelligent Physical Agents, 2000. 974
http://www.fipa.org/specs/fipa00037/ 975

[ISO8601] Date Elements and Interchange Formats, Information Interchange-Representation of Dates and Times. 976
International Standards Organisation, 1998. 977
http://www.iso.ch/cate/d15903.html 978

 979

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

20

6 Informative Annex A — Syntax and Lexical Notation 980

The syntax is expressed in standard EBNF format. For completeness, the notation is given in Table 2. 981
 982

Grammar rule component Example
Terminal tokens are enclosed in double quotes "("

Non terminals are written as capitalised identifiers Expression

Square brackets denote an optional construct ["," OptionalArg]

Vertical bar denotes an alternative Integer | Real

Asterisk denotes zero or more repetitions of the preceding expression Digit *

Plus denotes one or more repetitions of the preceding expression Alpha +

Parentheses are used to group expansions (A | B) *

Productions are written with the non-terminal name on the left-hand
side, expansion on the right-hand side and terminated by a full stop

AnonTerminal = "an expansion".

 983
Table 2: EBNF Rules 984

 985
Some slightly different rules apply for the generation of lexical tokens. Lexical tokens use the same notation as above, 986
with the exceptions noted in Table 3. 987
 988

Lexical rule component Example
Square brackets enclose a character set ["a", "b", "c"]

Dash in a character set denotes a range ["a" - "z"]

Tilde denotes the complement of a character set if it is the first
character

[~ "(", ")"]

Post-fix question-mark operator denotes that the preceding lexical
expression is optional (may appear zero or one times)

["0" - "9"]? ["0" - "9"]

 989
Table 3: Lexical Rules 990

 991

© 1996-2002 Foundation for Intelligent Physical Agents FIPA SL Content Language

21

7 Informative Annex B — ChangeLog 992

7.1 2002/11/01 - version H by TC X2S 993

Entire document: Fixed bugs in the examples, by adding quotes and converting symbols into lower case 994
Entire document: Added new non-terminal symbol TermOrIE and replaced all occurrences of Term with 995

TermOrIE 996
Page 2, line 72: Added symbol identifying fipa-sl content language 997
Page 2, lines 104-112: Removed superfluous binary term operators 998
Page 3, lines 139-149: Removed superfluous functional term operators 999
Page 3, lines 180-184: Removed superfluous arithmetic operators 1000
Page 4, line 224: Added optional Sign symbol to represent relative time 1001
Pages 6, lines 342-373: Removed description of superfluous equality operators 1002
Page 8, line 398: Added note on interpretation of iota identifying expression 1003
Page 8, line 406: Added note on interpretation of iota identifying expression 1004
Page 9, line 488 : Added note on interpretation of any identifying expression 1005
Page 9, line 494: Improved the definition of any identifying expression 1006
Page 9, line 497: Improved the definition of any identifying expression 1007
Page 10, line 556: Added note on interpretation of all identifying expression 1008
Page 11, line 619: Added requirement on encoding functional terms 1009
Page 12, line 639: Removed Table 1 on description of superfluous functional operators 1010
Page 12, lines 660-662: Removed ambiguity in representing communicative acts in SL 1011
Page 12, line 664: Added description of the actor of an ACL Message 1012
Page 13, lines 672-674: Removed section on agent identifiers 1013
Page 13, lines 375-380: Extended the section on Numerical Constants to incorporate more details on Grammar Rules 1014
Page 13, lines 682-692 : Extended the section on Date and Time Constants to add a description of relative time 1015
 1016

7.2 2002/12/03 - version I by FIPA Architecture Board 1017

Entire document: Promoted to Standard status 1018
 1019

