

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA SL Content Language Specification

Document title FIPA SL Content Language Specification
Document number XC00008D Document source FIPA TC C
Document status Experimental Date of this status 2000/08/03
Supersedes Annex B of OC00003
Contact agent_comm@fipa.org
Change history
2000/01/28 Initial draft
2000/07/17 Removed prefix SL from the names of all the non-terminal symbols. Removed the

ACLMessage non-terminal symbol. An ACLMessage is now denoted by the 'action'
prefix as any other action. Replaced QuantifiedExpression with
PrenexExpression and removed Wff from Proposition in FIPA SL2. Replaced sl
with fipa-sl in all the examples. Moved DateTime from the production rules to
the list of tokens. Replaced 'figure' with 'example'. Added section on 'syntax
notation'.

2000/07/20 Replaced 'referencial' with 'referential'.
2000/07/23 Editorial changes. Replaced fipa-sl to FIPA-SL in the examples.
2000/07/26 Modified non-terminal symbol Content to become a t-uple and, as a consequence,

corrected examples; Predicates with no arguments replaced by propositions
2000/08/03 Corrected examples to quote content of embedded communicative acts and to use

the Agent-Identifier term

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/

Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the
use of this specification.

 ii

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies.

The members of FIPA are individually and collectively committed to open competition in the development of agent-based
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership,
governmental body or international organization without restriction. In particular, members are not bound to implement or
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification
can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification
may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their
current status may be found in the FIPA List of Specifications. A list of terms and abbreviations used in the FIPA
specifications may be found in the FIPA Glossary.

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA
specifications and upcoming meetings may be found at http://www.fipa.org/.

 iii

Contents

1 Scope... 1
2 Grammar FIPA SL Concrete Syntax .. 2

2.1 Lexical Definitions ... 4
3 Notes on FIPA SL Semantics ... 6

3.1 Grammar Entry Point: FIPA SL Content Expression... 6
3.2 Well-Formed Formulas .. 6
3.3 Atomic Formula .. 7
3.4 Terms .. 8
3.5 Referential Operators ... 8

3.5.1 Iota ... 8
3.5.2 Any ..10
3.5.3 All..11

3.6 Functional Terms ...13
3.7 Result Predicate ..13
3.8 Actions and Action Expressions ..14
3.9 Agent Identifiers ...14
3.10 Numerical Constants..14
3.11 Date and Time Constants ...14

4 Reduced Expressivity Subsets of FIPA SL..15
4.1 FIPA SL0: Minimal Subset ..15
4.2 FIPA SL1: Propositional Form ...16
4.3 FIPA SL2: Decidability Restrictions ...17

5 References...20
6 Annex A - Syntax and Lexical Notation..21

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 1

1 Scope
This specification defines a concrete syntax for the FIPA Semantic Language (SL) content language. This syntax and its
associated semantics are suggested as a candidate content language for use in conjunction with the FIPA Agent
Communication Language (see [FIPA00037]). In particular, the syntax is defined to be a sub-grammar of the very general
s-expression syntax specified for message content given in [FIPA00037].

This content language is included in the specification on an informative basis. It is not mandatory for any FIPA
implementation to implement the computational mechanisms necessary to process all of the constructs in this language.
However, FIPA SL is a general purpose representation formalism that may be suitable for use in a number of different
agent domains.

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 2

2 Grammar FIPA SL Concrete Syntax
See Section 6, Annex A - Syntax and Lexical Notation for an explanation of the used syntactic notation.

Content = "(" ContentExpression+ ")".

ContentExpression = IdentifyingExpression
 | ActionExpression
 | Proposition.

Proposition = Wff.

Wff = AtomicFormula
 | "(" UnaryLogicalOp Wff ")"
 | "(" BinaryLogicalOp Wff Wff ")"
 | "(" Quantifier Variable Wff ")"
 | "(" ModalOp Agent Wff ")"
 | "(" ActionOp ActionExpression ")"
 | "(" ActionOp ActionExpression Wff ")".

UnaryLogicalOp = "not".

BinaryLogicalOp = "and"
 | "or"
 | "implies"
 | "equiv".

AtomicFormula = PropositionSymbol
 | "(" BinaryTermOp Term Term ")"
 | "(" PredicateSymbol Term+ ")"
 | "true"
 | "false".

BinaryTermOp = "="
 | "\="
 | ">"
 | ">="
 | "<"
 | "=<"
 | "member"
 | "contains"
 | "result".

Quantifier = "forall"
 | "exists".

ModalOp = "B"
 | "U"
 | "PG"
 | "I".

ActionOp = "feasible"
 | "done".

Term = Variable

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 3

 | FunctionalTerm
 | ActionExpression
 | IdentifyingExpression
 | Constant
 | Sequence
 | Set.

IdentifyingExpression = "(" ReferentialOperator Term Wff ")".

ReferentialOperator = "iota"
 | "any"
 | "all".

FunctionalTerm = "(" "cons" Term Term ")"
 | "(" "first" Term ")"
 | "(" "rest" Term ")"
 | "(" "nth" Term Term ")"
 | "(" "append" Term Term ")"
 | "(" "union" Term Term ")"
 | "(" "intersection" Term Term ")"
 | "(" "difference" Term Term ")"
 | "(" ArithmeticOp Term Term ")"
 | "(" FunctionSymbol Term* ")"
 | "(" FunctionSymbol Parameter* ")".

Constant = NumericalConstant
 | String
 | DateTime.

NumericalConstant = Integer
 | Float.

Variable = VariableIdentifier.

ActionExpression = "(" "action" Agent Term ")"
 | "(" "|" ActionExpression ActionExpression ")"
 | "(" ";" ActionExpression ActionExpression ")".

PropositionSymbol = String.

PredicateSymbol = String.

FunctionSymbol = String.

Agent = Term.

Sequence = "(" "sequence" Term* ")".

Set = "(" "set" Term* ")".

Parameter = ParameterName ParameterValue.

ParameterValue = Term.

ArithmeticOp = "+"
 | "-"

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 4

 | "*"
 | "/"
 | "%".

2.1 Lexical Definitions
All white space, tabs, carriage returns and line feeds between tokens should be skipped by the lexical analyser. See
Section 6, Annex A - Syntax and Lexical Notation for an explanation of the used notation.

String = Word
 | StringLiteral.

Word = [~ "\0x00" - "\0x20", "(", ")", "#", "0" - "9", ":", "-", "?"]
 [~ "\0x00" - "\0x20", "(", ")"]*.

ParameterName = ":" String.

VariableIdentifier = "?" String.

Sign = ["+" , "-"].

Integer = Sign? DecimalLiteral+
 | Sign? "0" ["x", "X"] HexLiteral+.

Dot = ".".

Float = Sign? FloatMantissa FloatExponent?
 | Sign? DecimalLiteral+ FloatExponent.

FloatMantissa = DecimalLiteral+ Dot DecimalLiteral*
 | DecimalLiteral* Dot DecimalLiteral+.

FloatExponent = Exponent Sign? DecimalLiteral+.

Exponent = ["e","E"].

DecimalLiteral = ["0" - "9"].

HexLiteral = ["0" - "9", "A" - "F", "a" - "f"].

StringLiteral = "\""([~ "\""]
 | "\\\"")*"\"".

DateTime = Year Month Day "T" Hour Minute
 Second MilliSecond TypeDesignator?.

Year = DecimalLiteral DecimalLiteral DecimalLiteral DecimalLiteral.

Month = DecimalLiteral DecimalLiteral.

Day = DecimalLiteral DecimalLiteral.

Hour = DecimalLiteral DecimalLiteral.

Minute = DecimalLiteral DecimalLiteral.

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 5

Second = DecimalLiteral DecimalLiteral.

MilliSecond = DecimalLiteral DecimalLiteral DecimalLiteral.

TypeDesignator = ["a" - "z", "A" – "Z"].

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 6

3 Notes on FIPA SL Semantics
This section contains explanatory notes on the intended semantics of the constructs introduced in above.

3.1 Grammar Entry Point: FIPA SL Content Expression
An FIPA SL content expression may be used as the content of an ACL message. There are three cases:

• A proposition, which may be assigned a truth value in a given context. Precisely, it is a well-formed formula (Wff)

using the rules described in the Wff production. A proposition is used in the inform communicative act (CA) and
other CAs derived from it.

• An action, which can be performed. An action may be a single action or a composite action built using the

sequencing and alternative operators. An action is used as a content expression when the act is request and other
CAs derived from it.

• An identifying reference expression (IRE), which identifies an object in the domain. This is the Referential operator and

is used in the inform-ref macro act and other CAs derived from it.

Other valid content expressions may result from the composition of the above basic cases. For instance, an action-
condition pair (represented by an ActionExpression followed by a Wff) is used in the propose act; an action-
condition-reason triplet (represented by an ActionExpression followed by two Wffs) is used in the reject-
proposal act. These are used as arguments to some ACL CAs in [FIPA00037].

3.2 Well-Formed Formulas
A well-formed formula is constructed from an atomic formula, whose meaning will be determined by the semantics of the
underlying domain representation or recursively by applying one of the construction operators or logical connectives
described in the Wff grammar rule. These are:

• (not <Wff>)

Negation. The truth value of this expression is false if Wff is true. Otherwise it is true.

• (and <Wff0> <Wff1>)

Conjunction. This expression is true iff1 well-formed formulae Wff0 and Wff1 are both true, otherwise it is false.

• (or <Wff0> <Wff1>)
Disjunction. This expression is false iff well-formed formulae Wff0 and Wff1 are both false, otherwise it is true.

• (implies <Wff0> <Wff1>)
Implication. This expression is true if either Wff0 is false or alternatively if Wff0 is true and Wff1 is true. Otherwise it
is false. The expression corresponds to the standard material implication connective Wff0 ⇒ Wff1.

• (equiv <Wff0> <Wff1>)

Equivalence. This expression is true if either Wff0 is true and Wff1 is true, or alternatively if Wff0 is false and Wff1
is false. Otherwise it is false.

• (forall <variable> <Wff>)

Universal quantification. The quantified expression is true if Wff is true for every value of value of the quantified
variable.

1 If and only if.

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 7

• (exists <variable> <Wff>)
Existential quantification. The quantified expression is true if there is at least one value for the variable for which Wff
is true.

• (B <agent> <expression>)
Belief. It is true that agent believes that expression is true.

• (U <agent> <expression>)
Uncertainty. It is true that agent is uncertain of the truth of expression. Agent neither believes expression nor
its negation, but believes that expression is more likely to be true than its negation.

• (I <agent> <expression>)

Intention. It is true that agent intends that expression becomes true and will plan to bring it about.

• (PG <agent> <expression>)
Persistent goal. It is true that agent holds a persistent goal that expression becomes true, but will not
necessarily plan to bring it about.

• (feasible <ActionExpression> <Wff>)
It is true that ActionExpression (or, equivalently, some event) can take place and just afterwards Wff will be true.

• (feasible <ActionExpression>)
Same as (feasible <ActionExpression> true).

• (done <ActionExpression> <Wff>)
It is true that ActionExpression (or, equivalently, some event) has just taken place and just before that Wff was
true.

• (done <ActionExpression>)
Same as (done <ActionExpression> true).

3.3 Atomic Formula
The atomic formula represents an expression which has a truth value in the language of the domain of discourse. Three
forms are defined:

• a given propositional symbol may be defined in the domain language, which is either true or false,

• two terms may or may not be equal under the semantics of the domain language, or,

• some predicate is defined over a set of zero or more arguments, each of which is a term.

The FIPA SL representation does not define a meaning for the symbols in atomic formulae: this is the responsibility of the
domain language representation and ontology. Several forms are defined:

• true false

These symbols represent the true proposition and the false proposition.

• (= Term1 Term2)

Term1 and Term2 denote the same object under the semantics of the domain.

• (\= Term1 Term2)

Term1 and Term2 do not denote the same object under the semantics of the domain.

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 8

• (> Constant1 Constant2)
The > operator relies on an order relation defined to be the usual numeric ordering for numerical constants and the
usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that comes
after the object denoted by Constant2, under the semantics of the domain.

• (>= Constant1 Constant2)

The >= operator relies on an order relation defined to be the usual numeric ordering for numerical constants and the
usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that comes
after or is the same object as the object denoted by Constant2, under the semantics of the domain.

• (< Constant1 Constant2)

The < operator relies on an order relation defined to be the usual numeric ordering for numerical constants and the
usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that comes
before the object denoted by Constant2, under the semantics of the domain.

• (=< Constant1 Constant2)

The =< operator relies on an order relation defined to be the usual numeric ordering for numerical constants and the
usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that comes
before or is the same object as the object denoted by Constant2, under the semantics of the domain.

• (member Term Collection)

The object denoted by Term, under the semantics of the domain, is a member of the collection (either a set or a
sequence) denoted by Collection under the semantics of the domain.

• (contains Collection1 Collection2)

If Collection1 and Collection2 denote sets, this proposition means the set denoted by Collection1
contains the set denoted by Collection2. If the arguments are sequences, then the proposition means that all of
the elements of the sequence denoted by Collection2 appear in the same order in the sequence denoted by
Collection1.

Other predicates may be defined over a set of arguments, each of which is a term, by using the (PredicateSymbol
Term+) production.

The FIPA SL representation does not define a meaning for other symbols in atomic formulae: this is the responsibility of
the domain language representation and the relative ontology.

3.4 Terms
Terms are either themselves atomic (constants and variables) or recursively constructed as a functional term in which a
functor is applied to zero or more arguments. Again, FIPA SL only mandates a syntactic form for these terms. With small
number of exceptions (see below), the meanings of the symbols used to define the terms are determined by the
underlying domain representation.

Note that, as mentioned above, no legal well-formed expression contains a free variable, that is, a variable not declared in
any scope within the expression. Scope introducing formulae are the quantifiers (forall, exists) and the reference
operators iota, any and all. Variables may only denote terms, not well-formed formulae.

3.5 Referential Operators

3.5.1 Iota

• (iota <term> <formula>)

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 9

The iota operator introduces a scope for the given expression (which denotes a term), in which the given identifier,
which would otherwise be free, is defined. An expression containing a free variable is not a well-formed FIPA SL
expression. The expression (iota x (P x)) may be read as "the x such that P [is true] of x". The iota operator is
a constructor for terms which denote objects in the domain of discourse.

• Formal Definition

A iota expression can only be evaluated with respect to a given theory. Suppose KB is a knowledge base such that
T(KB) is the theory generated from KB by a given reasoning mechanism. Formally, ι(τ, φ)=θτ iff θτ is a term that
belongs to the set Σ={θτ: θφ∈T(KB)} and Σ is a singleton; or ι(τ, φ) is undefined if Σ is not a singleton. In this definition
θ is a most general variable substitution, θτ is the result of applying θ to τ, and θφ is the result of applying θ to φ. This
implies that a failure occurs if no object or more than one object satisfies the condition specified in the iota operator.

• Example 1

This example depicts an interaction between agent A and B that makes use of the iota operator, where agent A is
supposed to have the following knowledge base KB={P(A), Q(1, A), Q(1, B)}.

(query-ref
 :sender (Agent-Identifier :name B)

 :receiver (set (Agent-Identifier :name A))
 :content
 ((iota ?x (p ?x)))
 :language FIPA-SL
 :reply-with query1)

(inform
 :sender (Agent-Identifier :name A)
 :receiver (set (Agent-Identifier :name B)
 :content
 ((= (iota ?x (p ?x)) a))
 :language FIPA-SL
 :in-reply-to query1)

The only object that satisfies proposition P(x) is a, therefore, the query-ref message is replied by the inform
message as shown.

• Example 2
This example shows another successful interaction but more complex than the previous one.

(query-ref
 :sender (Agent-Identifier :name B)
 :receiver (set (Agent-Identifier :name A))
 :content
 ((iota ?x (q ?x ?y)))
 :language FIPA-SL
 :reply-with query2)

(inform
 :sender (Agent-Identifier :name A)
 :receiver (set (Agent-Identifier :name B))
 :content
 ((= (iota ?x (q ?x ?y)) 1))
 :language FIPA-SL
 :in-reply-to query2)

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 10

The most general substitutions θ such that θQ(x, y) can be derived from KB are θ1={x/1, y/A} and θ2={x/1, y/B}.
Therefore, the set Σ={θτ: θφ∈T(KB)}={{x/1, y/A}x, {x/1, y/B}x }={1} is a singleton and hence (iota ?x (q ?x ?y))
represents the object 1.

• Example 3
Finally, this example shows an unsuccessful interaction using the iota operator. In this case, agent A cannot
evaluate the iota expression and therefore a failure message is returned to agent B

(query-ref
 :sender (Agent-Identifier :name B)
 :receiver (set (Agent-Identifier :name A))
 :content
 ((iota ?y (q ?x ?y)))
 :language FIPA-SL
 :reply-with query3)

(failure

 :sender (Agent-Identifier :name A)
 :receiver (set (Agent-Identifier :name B))
 :content
 ((action (Agent-Identifier :name A)
 (inform-ref
 :sender (Agent-Identifier :name A)
 :receiver (set (Agent-Identifier :name B))
 :content
 "((iota ?y (q ?x ?y)))"
 :language FIPA-SL
 :in-reply-to query3))
 more-than-one-answer)
 :language FIPA-SL
 :in-reply-to query3)

The most general substitutions that satisfy Q(x, y) are θ1={x/1, y/a} and θ2={x/1, y/b}, therefore, the set Σ={θτ:
θφ∈T(KB)}={{x/1, y/A}y, {x/1, y/B}y}={A, B}, which is not a singleton. This means that the iota expression used in
this interaction is not defined.

3.5.2 Any

• (any <term> <formula>)
The any operator is used to denote any object that satisfies the proposition represented by formula.

• Formal Definition

An any expression can only be evaluated with respect to a given theory. Suppose KB is a knowledge base such that
T(KB) is the theory generated from KB by a given reasoning mechanism. Formally, any(τ, φ)=θτ iff θτ is a term that
belongs to the set Σ={θτ: θφ∈T(KB)}; or any(τ, φ) is undefined if Σ is the empty set. In this definition θ is a most
general variable substitution, θτ is the result of applying θ to τ, and θφ is the result of applying θ to φ.

This definition implies that failures only occur if there are no objects satisfying the condition specified as the second
argument of the any operator.

• Example 4

Assuming that agent A has the following knowledge base KB={P(A), Q(1, A), Q(1, B)}, this example shows a
successful interaction with agent A using the any operator.

(query-ref

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 11

 :sender (Agent-Identifier :name B)
 :receiver (set (Agent-Identifier :name A))
 :content
 ((any (sequence ?x ?y) (q ?x ?y)))
 :language FIPA-SL
 :reply-with query1)

(inform
 :sender (Agent-Identifier :name A)
 :receiver (set (Agent-Identifier :name B))
 :content
 ((= (any (sequence ?x ?y) (q ?x ?y)) (sequence 1 a)))
 :language FIPA-SL
 :in-reply-to query1)

The most general substitutions θ such that θQ(x, y) can be derived from KB are {x/1, y/A} and {x/1, y/B}, therefore
Σ={θSequence(x, y): θQ(x, y)∈T(KB)}={Sequence(1, A), Sequence(1, B)}. Using this set, agent A chooses the first
element of Σ as the appropriate answer to agent B.

• Example 5

This example shows an unsuccessful interaction with agent A, using the any operator.

(query-ref
 :sender (Agent-Identifier :name B)
 :receiver (set (Agent-Identifier :name A))
 :content
 ((any ?x (r ?x)))
 :language FIPA-SL
 :reply-with query2)

(failure
 :sender (Agent-Identifier :name A)
 :receiver (set (Agent-Identifier :name B))
 :content
 ((action (Agent-Identifier :name A)
 (inform-ref
 :sender (Agent-Identifier :name A)
 :receiver (set (Agent-Identifier :name B))
 :content
 "((any ?x (r ?x)))"
 :language FIPA-SL
 :in-reply-to query2))
 (unknown-predicate r))
 :language FIPA-SL
 :in-reply-to query2)

Since agent A does not know the r predicate, the answer to the query that had been sent by agent B cannot be
determined, therefore a failure message is sent to agent B from agent A. The failure message specifies the failure’s
reason (i.e., unknown-predicate r)

3.5.3 All

• (all <term> <formula>)
The all operator is used to denote the set of all objects that satisfy the proposition represented by formula.

• Formal Definition

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 12

An all expression can only be evaluated with respect to a given theory. Suppose KB is a knowledge base such that
T(KB) is the theory generated from KB by a given reasoning mechanism. Formally, all(τ, φ)={θτ: θφ∈T(KB)}. Notice that
all(τ, φ) may be a singleton or even an empty set. In this definition θ is a most general variable substitution, θτ is the
result of applying θ to τ, and θφ is the result of applying θ to φ.

If no objects satisfy the condition specified as the second argument of the all operator, then the identifying
expression denotes an empty set.

• Example 6

Suppose agent A has the following knowledge base KB={P(A), Q(1, A), Q(1, B)}. This example shows a successful
interaction between agent A and B that make use of the all operator.

(query-ref
 :sender (Agent-Identifier :name B)
 :receiver (set (Agent-Identifier :name A))
 :content
 ((all (sequence ?x ?y) (q ?x ?y)))
 :language FIPA-SL
 :reply-with query1)

(inform
 :sender (Agent-Identifier :name A)
 :receiver (set (Agent-Identifier :name B))
 :content
 ((= (all (sequence ?x ?y) (q ?x ?y)) (set(sequence 1 a)(sequence 1 b))))
 :language FIPA-SL
 :in-reply-to query1)

The set of the most general substitutions θ such that θQ(x, y) can be derived from KB is {{x/1, y/A}, {x/1, y/B}},
therefore all(Sequence(x, y), Q(x, y))={Sequence(1, A), Sequence(1, B)}.

• Example 7
Following Example 6, if there is no possible answer to a query making use of the all operator, then the agent should
return the empty set.

(query-ref
 :sender (Agent-Identifier :name B)
 :receiver (set (Agent-Identifier :name A))
 :content
 ((all ?x (q ?x c)))
 :language FIPA-SL
 :reply-with query2)

(inform
 :sender (Agent-Identifier :name A)
 :receiver (set (Agent-Identifier :name B))
 :content
 ((= (all ?x (q ?x c))(set)))
 :language FIPA-SL
 :in-reply-to query2)

Since there is no possible substitution for x such that Q(x, C) can be derived from KB, then all(x, Q(x, c))={}. In this
interaction the term (set) represents the empty set.

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 13

3.6 Functional Terms
A functional term refers to an object via a functional relation (referred by the FunctionSymbol) with other objects (that
is, the terms or parameters), rather than using the direct name of that object, for example, (fatherOf Jesus) rather
than God.

Two syntactical forms can be used to express a functional term. In the first form the functional symbol is followed by a list
of terms that are the arguments of the function symbol. The semantics of the arguments is position-dependent, for
example, (divide 10 2) where 10 is the dividend and 2 is the divisor. In the second form each argument is preceded by
its name, for example, (divide :dividend 10 :divisor 2). This second form is particularly appropriate to represent
descriptions where the function symbol should be interpreted as the constructor of an object, while the parameters
represent the attributes of the object.

The following is an example of an object, instance of a vehicle class:

(vehicle
 :colour red
 :max-speed 100
 :owner (Person
 :name Luis
 :nationality Portuguese))

Some ontologies may decide to give a description of some concepts only in one or both of these two forms, that is by
specifying, or not, a default order to the arguments of each function in the domain of discourse. How this order is specified
is outside the scope of this specification.

Functional terms can be constructed by a domain functor applied to zero or more terms. Besides domain functions, FIPA
SL includes functional terms constructed from widely used functional operators and their arguments described in Table 1.

Operator Example Description
+
-
/
%
*

5 % 2 Usual arithmetic operations.

Union (union ?s1 ?s2) Represents the union of two sets.
Intersection (intersection ?s1 ?s2) Represents the intersection of two sets.
Difference (difference ?s1 ?s2) Represents the set difference between ?s1 and ?s2.
First (first ?seq) Represents the first element of a sequence.
Rest (rest ?seq) Represents sequence ?seq except its first element.
Nth (nth 3 ?seq) Represents the nth element of a sequence.
Cons (cons a (sequence b c)) If its second argument is a sequence, it represents the

sequence that results of inserting its first argument in
front of its second argument. If its second argument is a
set, it represents the set that has all elements contained
in its second argument plus its first argument.

Append (append ?seq (sequence c d)) Represents the sequence that results of concatenating
its first argument with its second argument.

Table 1: Functional Operators

3.7 Result Predicate
A common need is to determine the result of performing an action or evaluating a term. To facilitate this operation, a
standard predicate result, of arity two, is introduced to the language. Result/2 has the declarative meaning that the

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 14

result of evaluating a term, or equivalently of performing an action, encoded by the first argument term, is the second
argument term. However, it is expected that this declarative semantics will be implemented in a more efficient, operational
way in any given FIPA SL interpreter.

A typical use of the result predicate is with a variable scoped by iota, giving an expression whose meaning is, for
example, "the x which is the result of agent i performing act":

(iota x (result (action i act) x)))

3.8 Actions and Action Expressions
Action expressions are a special subset of terms. An action itself is introduced by the keyword action and comprises
the agent of the action (that is, an identifier representing the agent performing the action) and a term denoting the action
which is [to be] performed.

Notice that a specific type of action is an ACL communicative act (CA). When expressed in FIPA SL, syntactically an
ACL communicative act is an action where the term denotes the CA including all its parameters, as referred by the used
ontology. Example 5 includes an example of an ACL CA, encoded as a String, whose content embeds another CA.

Two operators are used to build terms denoting composite CAs:

• the sequencing operator (;) denotes a composite act in which the first action (represented by the first operand) is

followed by the second action, and,

• the alternative operator (|) denotes a composite act in which either the first action occurs, or the second, but not

both.

3.9 Agent Identifiers
An agent is represented by referring to its name. The name is defined using the standard format from [FIPA00023].

3.10 Numerical Constants
The standard definitions for integers and floating point numbers are assumed. However, due to the necessarily
unpredictable nature of cross-platform dependencies, agents should not make strong assumptions about the precision
with which another agent is able to represent a given numerical value. FIPA SL assumes only 32-bit representations of
both integers and floating point numbers. Agents should not exchange message contents containing numerical values
requiring more than 32 bits to encode precisely, unless some prior arrangement is made to ensure that this is valid.

3.11 Date and Time Constants
Time tokens are based on [ISO8601], with extension for millisecond durations. If no type designator is given, the local
time zone is then used. The type designator for UTC is the character Z; UTC is preferred to prevent time zone ambiguities.
Note that years must be encoded in four digits. As an example, 8:30 am on 15th April, 1996 local time would be encoded
as:

19960415T083000000

The same time in UTC would be:

19960415T083000000Z

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 15

4 Reduced Expressivity Subsets of FIPA SL
The FIPA SL definition given above is a very expressive language, but for some agent communication tasks it is
unnecessarily powerful. This expressive power has an implementation cost to the agent and introduces problems of the
decidability of modal logic. To allow simpler agents, or agents performing simple tasks, to do so with minimal
computational burden, this section introduces semantic and syntactic subsets of the full FIPA SL content language for
use by the agent when it is appropriate or desirable to do so. These subsets are defined by the use of profiles, that is,
statements of restriction over the full expressive power of FIPA SL. These profiles are defined in increasing order of
expressivity as FIPA-SL0, FIPA-SL1 and FIPA-SL2.

Note that these subsets of FIPA SL, with additional ontological commitments (that is, the definition of domain predicates
and constants) are used in other FIPA specifications.

4.1 FIPA SL0: Minimal Subset
Profile 0 is denoted by the normative constant FIPA-SL0 in the :language parameter of an ACL message. Profile 0 of
FIPA SL is the minimal subset of the FIPA SL content language. It allows the representation of actions, the determination
of the result a term representing a computation, the completion of an action and simple binary propositions. The following
defines the FIPA SL0 grammar:

Content = "(" ContentExpression+ ")".

ContentExpression = ActionExpression
 | Proposition.

Proposition = Wff.

Wff = AtomicFormula
 | "(" ActionOp ActionExpression ")".

AtomicFormula = PropositionSymbol
 | "(" "result" Term Term ")"
 | "(" PredicateSymbol Term+ ")"
 | "true"
 | "false".

ActionOp = "done".

Term = Constant
 | Set
 | Sequence
 | FunctionalTerm
 | ActionExpression.

ActionExpression = "(" "action" Agent Term ")".

FunctionalTerm = "(" FunctionSymbol Term* ")"
 | "(" FunctionSymbol Parameter* ")".

Parameter = ParameterName ParameterValue.

ParameterValue = Term.

Agent = Term.

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 16

FunctionSymbol = String.

PropositionSymbol = String.

PredicateSymbol = String.

Constant = NumericalConstant
 | String
 | DateTime.

Set = "(" "set" Term* ")".

Sequence = "(" "sequence" Term* ")".

NumericalConstant = Integer
 | Float.

The same lexical definitions described in Section 2.1, Lexical Definitions apply for FIPA SL0.

4.2 FIPA SL1: Propositional Form
Profile 1 is denoted by the normative constant FIPA-SL1 in the :language parameter of an ACL message. Profile 1 of
FIPA SL extends the minimal representational form of FIPA SL0 by adding Boolean connectives to represent propositional
expressions. The following defines the FIPA SL1 grammar:

Content = "(" ContentExpression+ ")".

ContentExpression = ActionExpression
 | Proposition.

Proposition = Wff.

Wff = AtomicFormula
 | "(" UnaryLogicalOp Wff ")"
 | "(" BinaryLogicalOp Wff Wff ")"
 | "(" ActionOp ActionExpression ")".

UnaryLogicalOp = "not".

BinaryLogicalOp = "and"
 | "or".

AtomicFormula = PropositionSymbol
 | "(" "result" Term Term ")"
 | "(" PredicateSymbol Term+ ")"
 | "true"
 | "false".

ActionOp = "done".

Term = Constant
 | Set
 | Sequence
 | FunctionalTerm
 | ActionExpression.

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 17

ActionExpression = "(" "action" Agent Term ")".

FunctionalTerm = "(" FunctionSymbol Term* ")"
 | "(" FunctionSymbol Parameter* ")".

Parameter = ParameterName ParameterValue.

ParameterValue = Term.

Agent = Term.

FunctionSymbol = String.

PropositionSymbol = String.

PredicateSymbol = String.

Constant = NumericalConstant
 | String
 | DateTime.

Set = "(" "set" Term* ")".

Sequence = "(" "sequence" Term* ")".

NumericalConstant = Integer
 | Float.

The same lexical definitions described in Section 2.1, Lexical Definitions apply for FIPA SL1.

4.3 FIPA SL2: Decidability Restrictions
Profile 2 is denoted by the normative constant FIPA-SL2 in the :language parameter of an ACL message. Profile 2 of
FIPA SL allows first order predicate and modal logic, but is restricted to ensure that it must be decidable. Well-known
effective algorithms exist that can derive whether or not an FIPA SL2 Wff is a logical consequence of a set of Wffs (for
instance KSAT and Monadic). The following defines the FIPA SL2 grammar:

Content = "(" ContentExpression+ ")".

ContentExpression = IdentifyingExpression
 | ActionExpression
 | Proposition.

Proposition = PrenexExpression.

Wff = AtomicFormula
 | "(" UnaryLogicalOp Wff ")"
 | "(" BinaryLogicalOp Wff Wff ")"
 | "(" ModalOp Agent PrenexExpression ")"
 | "(" ActionOp ActionExpression ")"
 | "(" ActionOp ActionExpression UnivExistQuantWff ")".

UnaryLogicalOp = "not".

BinaryLogicalOp = "and"
 | "or"

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 18

 | "implies"
 | "equiv".

AtomicFormula = PropositionSymbol
 | "(" "=" Term Term ")"
 | "(" "result" Term Term ")"
 | "(" PredicateSymbol Term+ ")"
 | "true"
 | "false".

PrenexExpression = UnivQuantExpression
 | ExistQuantExpression
 | Wff.

UnivQuantExpression = "(" "forall" Variable Wff ")"
 | "(" "forall" Variable UnivQuantExpression ")"
 | "(" "forall" Variable ExistQuantExpression ")".

ExistQuantExpression = "(" "exists" Variable Wff ")"
 | "(" "exists" Variable ExistQuantExpression ")".

Term = Variable
 | FunctionalTerm
 | ActionExpression
 | IdentifyingExpression
 | Constant
 | Sequence
 | Set.

IdentifyingExpression = "(" ReferentialOp Term Wff ")".

ReferentialOp = "iota"
 | "any"
 | "all".

FunctionalTerm = "(" FunctionSymbol Term* ")"
 | "(" FunctionSymbol Parameter* ")".

Parameter = ParameterName ParameterValue.

ParameterValue = Term.

ActionExpression = "(" "action" Agent Term ")"
 | "(" "|" ActionExpression ActionExpression ")"
 | "(" ";" ActionExpression ActionExpression ")".

Variable = VariableIdentifier.

Agent = Term.

FunctionSymbol = String.

Constant = NumericalConstant
 | String
 | DateTime.

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 19

ActionOp = "feasible"
 | "done".

PropositionSymbol = String.

PredicateSymbol = String.

NumericalConstant = Integer
 | Float.

The same lexical definitions described in Section 2.1, Lexical Definitions apply for FIPA SL2.

The Wff production of FIPA SL2 no longer directly contains the logical quantifiers, but these are treated separately to
ensure only prefixed quantified formulas, such as:

(forall ?x1
 (forall ?x2
 (exists ?y1
 (exists ?y2
 (Phi ?x1 ?x2 ?y1 ?y2)))))

Where (Phi ?x1 ?x2 ?y1 ?y2) does not contain any quantifier.

The grammar of FIPA SL2 still allows for quantifying-in inside modal operators. For example, the following formula is still
admissible under the grammar:

(forall ?x1
 (or
 (B i (p ?x1))
 (B j (q ?x1))))

It is not clear that formulae of this kind are decidable. However, changing the grammar to express this context sensitivity
would make the EBNF form above essentially unreadable. Thus, the following additional mandatory constraint is placed on
well-formed content expressions using FIPA SL2:

Within the scope of an SLModalOperator only closed formulas are allowed, that is, formulas without free variables.

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 20

5 References
[FIPA00023] FIPA Agent Management Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00023/
[FIPA00037] FIPA Agent Communication Language Overview. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00037/
[ISO8601] Date Elements and Interchange Formats, Information Interchange-Representation of Dates and Times.

International Standards Organisation, 1998.
http://www.iso.ch/cate/d15903.html

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 21

6 Annex A - Syntax and Lexical Notation
The syntax is expressed in standard EBNF format. For completeness, the notation is given in Table 2.

Grammar rule component Example
Terminal tokens are enclosed in double quotes "("
Non terminals are written as capitalised identifiers Expression
Square brackets denote an optional construct ["," OptionalArg]
Vertical bar denotes an alternative Integer | Real
Asterisk denotes zero or more repetitions of the preceding expression Digit *
Plus denotes one or more repetitions of the preceding expression Alpha +
Parentheses are used to group expansions (A | B) *
Productions are written with the non-terminal name on the left-hand side,
expansion on the right-hand side and terminated by a full stop

AnonTerminal = "an expansion".

Table 2: EBNF Rules

Some slightly different rules apply for the generation of lexical tokens. Lexical tokens use the same notation as above,
with the exceptions noted in Table 3.

Lexical rule component Example
Square brackets enclose a character set ["a", "b", "c"]
Dash in a character set denotes a range ["a" - "z"]
Tilde denotes the complement of a character set if it is the first character [~ "(", ")"]
Post-fix question-mark operator denotes that the preceding lexical
expression is optional (may appear zero or one times)

["0" - "9"]? ["0" - "9"]

Table 3: Lexical Rules

