
 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA KIF Content Language Specification 5

 6

Document title FIPA KIF Content Language Specification
Document number XC00010C Document source FIPA TC C
Document status Experimental Date of this status 2003/01/28
Supersedes None
Contact fab@fipa.org
Change history See Informative Annex B — ChangeLog

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/ 18

Geneva, Switzerland 19

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

ii

Foreword 20

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 21
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-22
based applications. This occurs through open collaboration among its member organizations, which are companies and 23
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 24
and intends to contribute its results to the appropriate formal standards bodies. 25

The members of FIPA are individually and collectively committed to open competition in the development of agent-26
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 27
partnership, governmental body or international organization without restriction. In particular, members are not bound to 28
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 29
participation in FIPA. 30

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 31
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process 32
of specification may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA 33
specifications and their current status may be found in the FIPA List of Specifications. A list of terms and abbreviations 34
used in the FIPA specifications may be found in the FIPA Glossary. 35

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA 36
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA 37
specifications and upcoming meetings may be found at http://www.fipa.org/. 38

iii

Contents 39

1 Scope...1 40
2 FIPA KIF Specification...2 41

2.1 Syntax...2 42
2.1.1 Introduction ...2 43
2.1.2 Characters...3 44
2.1.3 Lexemes..3 45
2.1.4 Expressions...5 46

2.2 Basics ...8 47
2.2.1 Introduction ...8 48
2.2.2 Bottom...9 49
2.2.3 Functional Terms ..9 50
2.2.4 Relational Sentences ..9 51
2.2.5 Equations and Inequalities ..9 52
2.2.6 True and False ..9 53

2.3 Logic ...10 54
2.3.1 Logical Terms..10 55
2.3.2 Logical Sentences...10 56
2.3.3 Quantified Sentences..10 57
2.3.4 Definitions..11 58

2.4 Numbers ...12 59
2.4.1 Introduction ...12 60
2.4.2 Functions on Numbers ..12 61
2.4.3 Relations on Numbers...14 62

2.5 Lists ..14 63
2.6 Characters and Strings...16 64

2.6.1 Characters...16 65
2.6.2 Strings ...17 66

2.7 Meta Knowledge...17 67
2.7.1 Naming Expressions ...17 68
2.7.2 Types of Expressions..18 69
2.7.3 Changing Levels of Denotation ...19 70

3 References ..21 71
4 Informative Annex A — Examples...22 72
5 Informative Annex B — ChangeLog ..24 73

5.1 2003/01/28 - version C by FIPA Architecture Board ..24 74

1 Scope 75

This document gives the specification the draft proposed American National Standard (ANSkif) for Knowledge 76
Interchange Format (KIF) as a content language for FIPA ACL (see [FIPA00061]. This specification covers: 77
 78
• Expression of objects as terms. 79
 80
• Expression of propositions as sentences. 81
 82
FIPA KIF currently has no specific way to expresses actions. 83
 84

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

2

2 FIPA KIF Specification 85

The aim of this section is to specify KIF as a language for use in the interchange of knowledge among disparate 86
computer systems (created by different programmers, at different times, in different languages, and so forth), especially 87
among FIPA agents. 88
 89
FIPA KIF is not intended as a primary language for interaction with human users (though it can be used for this 90
purpose). Different computer systems can interact with their users in whatever forms are most appropriate to their 91
applications (for example, Prolog, conceptual graphs, natural language and so forth). 92
 93
FIPA KIF is also not intended as an internal representation for knowledge within computer systems or within closely 94
related sets of computer systems (though the language can be used for this purpose as well). Typically, when a 95
computer system reads a knowledge base in FIPA KIF, it converts the data into its own internal form (specialized 96
pointer structures, arrays, etc.) and all computation is done using these internal forms. When the computer system 97
needs to communicate with another computer system, it maps its internal data structures into FIPA KIF before message 98
transfer. 99
 100
The following categorical features are essential to the design of FIPA KIF: 101
 102
• The language has declarative semantics. It is possible to understand the meaning of expressions in the language 103

without appeal to an interpreter for manipulating those expressions. In this way, FIPA KIF differs from other 104
languages that are based on specific interpreters, such as Emycin and Prolog. 105

 106
• The language is logically comprehensive. At its most general, it provides for the expression of arbitrary logical 107

sentences. In this way, it differs from relational database languages (like SQL) and logic programming languages 108
(like Prolog). 109

 110
• The language provides for the representation of knowledge about knowledge. This allows the user to make 111

knowledge representation decisions explicit and permits the user to introduce new knowledge representation 112
constructs without changing the language. 113
 114

In addition to these essential features, FIPA KIF is designed to maximize the following additional features (to the extent 115
possible while preserving the preceding features): 116
 117
• Implementability. Although FIPA KIF is not intended for use within programs as a representation or 118

communication language, it should be usable for that purpose if so desired. 119
 120
• Readability. Although FIPA KIF is not intended primarily as a language for interaction with humans, human 121

readability facilitates its use in describing representation language semantics, its use as a publication language for 122
example knowledge bases, its use in assisting humans with knowledge base translation problems, etc. 123

 124
Unless otherwise stated, all terms and definitions are taken from [ISO10646] and [ISO14481]. 125
 126

2.1 Syntax 127

2.1.1 Introduction 128

As with many computer-oriented languages, the syntax of FIPA KIF is most easily described in three layers. First, there 129
are the basic characters of the language. These characters can be combined to form lexemes. Finally, the lexemes of 130
the language can be combined to form grammatically legal expressions. Although this layering is not strictly essential to 131
the specification of FIPA KIF, it simplifies the description of the syntax by dealing with white space at the lexeme level 132
and eliminating that detail from the expression level. 133
 134
In this section, the syntax of FIPA KIF is presented using a modified BNF notation. All nonterminals and BNF 135
punctuation are written in boldface, while characters in FIPA KIF are expressed in plain font. The notation {x1, ..., xn} 136

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

3

means the set of terminals x1, ..., xn. The notation [nonterminal] means zero or one instances of nonterminal; 137
nonterminal* means zero or more occurrences; nonterminal+ means one or more occurrences; nonterminal ^ n 138
means n occurrences. The notation nonterminal1 - nonterminal2 refers to all of the members of nonterminal1 except 139
for those in nonterminal2. The notation int (n) denotes the decimal representation of integer n. The nonterminals 140
space, tab, return, linefeed and page refer to the characters corresponding to ASCII codes 32, 9, 13, 10, and 12, 141
respectively. The nonterminal character denotes the set of all 128 ASCII characters. The nonterminal empty denotes 142
the empty string. 143
 144

2.1.2 Characters 145

The alphabet of FIPA KIF consists of 7 bit blocks of data. In this document, we refer to FIPA KIF data blocks via their 146
usual ASCII encodings as characters as given in [ISO646]. 147
 148
FIPA KIF characters are classified as upper case letters, lower case letters, digits, alpha characters (non-alphabetic 149
characters that are used in the same way that letters are used), special characters, white space, and other characters 150
(every ASCII character that is not in one of the other categories): 151
 152

upper ::= A | B | C | D | E | F | G | H | I | J | K | L | M | 153
 N | O | P | Q | R | S | T | U | V | W | X | Y | Z 154
 155

lower ::= a | b | c | d | e | f | g | h | i | j | k | l | m | 156
 n | o | p | q | r | s | t | u | v | w | x | y | z 157
 158

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 159
 160

alpha ::= ! | $ | % | & | * | + | - | . | / | < | = | > | ? | 161
 @ | _ | ~ | 162
 163

special ::= " | # | ' | (|) | , | \ | ^ | ' 164
 165

white ::= space | tab | return | linefeed | page 166
 167
A normal character is either an upper case character, a lower case character, a digit, or an alpha character. 168
 169

normal ::= upper | lower | digit | alpha 170
 171

2.1.3 Lexemes 172

The process of converting characters into lexemes in called lexical analysis. The input to this process is a stream of 173
characters, and the output is a stream of lexemes. 174
 175
The function of a lexical analyser is cyclic. It reads characters from the input string until it encounters a character that 176
cannot be combined with previous characters to form a legal lexeme. When this happens, it outputs the lexeme 177
corresponding to the previously read characters. It then starts the process over again with the new character. White 178
space causes a break in the lexical analysis process but otherwise is discarded. 179
 180
There are five types of lexemes in FIPA KIF: special lexemes, words, character references, character strings and 181
character blocks. Each special character forms its own lexeme. It cannot be combined with other characters to form 182
more complex lexemes, except through the escape' syntax described below. 183
 184
A word is a contiguous sequence of normal characters or other characters preceded by the escape character \. 185
 186

word ::= normal | word normal | word\character 187
 188
It is possible to include the character \ in a word by preceding it by another occurrence of \, that is, two contiguous 189
occurrences of \ are interpreted as a single occurrence. For example, the string A\\\'B corresponds to a word 190
consisting of the four characters A, \, ', and B. 191
 192

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

4

Except for characters following \, the lexical analysis of words is case insensitive. The output lexeme for any word 193
corresponds to the lexeme obtained by converting all letters not following \ to their upper case equivalents. For 194
example, the word abc and the word ABC map into the same lexeme. The word a\bc maps into the same lexeme as 195
the word A\bC, which is not the same as the lexeme for the word ABC, since the second character is lower case. 196
 197
A character reference consists of the characters #, \, and any character. Character references allow us to refer to 198
characters as characters and differentiate them from one-character symbols, which may refer to other objects. 199
 200

charref ::= #\character 201
 202
A character string is a series of characters enclosed in quotation marks. The escape character \ is used to permit the 203
inclusion of quotation marks and the \ character itself within such strings. 204
 205

string ::= "quotable" 206
 207

quotable ::= empty | quotable strchar | quotable\character 208
 209

strchar ::= character - {",\} 210
 211
Sometimes it is desirable to group together a sequence of arbitrary bits or characters without imposing escape 212
characters, for example, to encode images, audio, or video in special formats. Character blocks permit this sort of 213
grouping through the use of a prefix that specifies how many of the following characters are to grouped together in this 214
way. A character block consists of the character # followed by the decimal encoding of a positive integer n, the 215
character q or Q and then n arbitrary characters. 216
 217

block ::= # int(n) q character^n | # int(n) Q character^n 218
 219
For the purpose of grammatical analysis, it is useful to subdivide the class of words a little further, viz. as variables, 220
operators and constants. 221
 222
A variable is a word in which the first character is ? or @. A variable that begins with ? is called an individual variable. 223
A variable that begins with an @ is called a sequence variable. 224
 225

variable ::= indvar | seqvar 226
 227

indvar ::= ?word 228
 229

seqvar ::= @word 230
 231
Operators are used in forming complex expressions of various sorts. There are three types of operators in FIPA KIF: 232
 233
• Term operators are used in forming complex terms. 234
 235
• Sentence operators and user operators are used in forming complex sentences. 236
 237
• Definition operators are used in forming definitions. 238
 239

operator ::= termop | sentop | defop 240
 241

termop ::= value | listof | quote | if 242
 243

sentop ::= holds | = | /= | not | and | or | => | <= | <=> | 244
 forall | exists 245
 246

defop ::= defobject | defunction | defrelation | deflogical | 247
 := | :-> | :<= | :=> 248
 249
All other words are called constants: 250

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

5

 251
constant ::= word - variable - operator 252

 253
Semantically, there are four categories of constants in FIPA KIF: 254
 255
• Object constants are used to denote individual objects. 256
 257
• Function constants denote functions on those objects. 258
 259
• Relation constants denote relations. 260
 261
• Logical constants express conditions about the world and are either true or false. 262
 263
FIPA KIF is unusual among logical languages in that there is no syntactic distinction among these four types of 264
constants; any constant can be used where any other constant can be used. The differences between these categories 265
of constants is entirely semantic. 266
 267

2.1.4 Expressions 268

The legal expressions of FIPA KIF are formed from lexemes according to the rules presented in this section. There are 269
three disjoint types of expressions in the language: 270
 271
• Terms are used to denote objects in the world being described. 272
 273
• Sentences are used to express facts about the world. 274
 275
• Definitions are used to define constants. 276
 277
There are nine types of terms in FIPA KIF: individual variables, constants, character references, character strings, 278
character blocks, functional terms, list terms, quotations, and logical terms. Individual variables, constants, character 279
references, strings and blocks were discussed earlier. 280
 281

term ::= indvar | constant | charref | string | block | 282
 funterm | listterm | quoterm | logterm 283
 284
A implicit functional term consists of a constant and an arbitrary number of argument terms, terminated by an 285
optional sequence variable and surrounded by matching parentheses. Note that there is no syntactic restriction on the 286
number of argument terms; arity restrictions in FIPA KIF are treated semantically. 287
 288

funterm ::= (constant term* [seqvar]) 289
 290
A explicit functional term consists of the operator value and one or more argument terms, terminated by an optional 291
sequence variable and surrounded by matching parentheses. 292
 293

funterm ::= (value term term* [seqvar]) 294
 295
A list term consists of the listof operator and a finite list of terms, terminated by an optional sequence variable and 296
enclosed in matching parentheses. 297
 298

listterm ::= (listof term* [seqvar]) 299
 300
Quotations involve the quote operator and an arbitrary list expression. A list expression is either an atom or a 301
sequence of list expressions surrounded by parentheses. An atom is either a word or a character reference or a 302
character string or a character block. Note that the list expression embedded within a quotation need not be a legal 303
expression in FIPA KIF. 304
 305

quoterm ::= (quote listexpr) | 'listexpr 306

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

6

 307
listexpr ::= atom | (listexpr*) 308

 309
atom ::= word | charref | string | block 310

 311
Logical terms involve the if and cond operators. The if form allows for the testing of a single condition or multiple 312
conditions and an optional term at the end allows for the specification of a default value when all of the conditions are 313
false. The cond form is similar but groups the pairs of sentences and terms within parentheses and has no optional 314
term at the end. 315
 316

logterm ::= (if logpair+ [term]) 317
 318

logpair ::= sentence term 319
 320

logterm ::= (cond logitem*) 321
 322

logitem ::= (sentence term) 323
 324
The following BNF defines the set of legal sentences in FIPA KIF. There are six types of sentences (logical constants 325
have already been introduced): 326
 327

sentence ::= constant | equation | inequality | 328
 relsent | logsent | quantsent 329
 330
An equation consists of the = operator and two terms. An inequality consist of the /= operator and two terms. 331
 332

equation ::= (= term term) 333
 334

inequality ::= (/= term term) 335
 336
An implicit relational sentence consists of a constant and an arbitrary number of argument terms, terminated by an 337
optional sequence variable. As with functional terms, there is no syntactic restriction on the number of argument terms 338
in a relation sentence. 339
 340

relsent ::= (constant term* [seqvar]) 341
 342
A explicit relational sentence consists of the operator holds and one or more argument terms, terminated by an 343
optional sequence variable and surrounded by matching parentheses. 344
 345

relsent ::= (holds term term* [seqvar]) 346
 347
It is noteworthy that the syntax of implicit relational sentences is the same as that of implicit functional terms. On the 348
other hand, their meanings are different. Fortunately, the context of each such expression determines its type (as an 349
embedded term in one case or as a top-level sentence or argument to some sentential operator in the other case); and 350
so this slight ambiguity causes no problems. 351
 352
The syntax of logical sentences depends on the logical operator involved. A sentence involving the not operator is 353
called a negation. A sentence involving the and operator is called a conjunction, and the arguments are called 354
conjuncts. A sentence involving the or operator is called a disjunction, and the arguments are called disjuncts. A 355
sentence involving the => operator is called an implication, all of its arguments but the last are called antecedents which 356
is called the consequent. A sentence involving the <= operator is called a reverse implication, its first argument is called 357
the consequent and the remaining arguments are called the antecedents. A sentence involving the <=> operator is 358
called an equivalence. 359
 360
 logsent ::= (not sentence) | 361
 (and sentence*) | 362
 (or sentence*) | 363
 (=> sentence* sentence) | 364
 (<= sentence sentence*) | 365

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

7

 (<=> sentence sentence) 366
 367
There are two types of quantified sentences: a universally quantified sentence is signalled by the use of the forall 368
operator, and an existentially quantified sentence is signalled by the use of the exists operator. The first argument in 369
each case is a list of variable specifications. A variable specification is either a variable or a list consisting of a variable 370
and a term denoting a relation that restricts the domain of the specified variable. 371
 372

quantsent ::= (forall (varspec+) sentence) | 373
 (exists (varspec+) sentence) 374
 375

varspec ::= variable | (variable constant) 376
 377
Note that, according to these rules, it is permissible to write sentences with free variables, that is, variables that do not 378
occur within the scope of any enclosing quantifiers. The significance of the free variables in a sentence depends on the 379
use of the sentence. When we assert the truth of a sentence with free variables, we are, in effect, saying that the 380
sentence is true for all values of the free variables, that is, the variables are universally quantified. When we ask 381
whether a sentence with free variables is true, we are, in effect, asking whether there are any values for the free 382
variables for which the sentence is true, i.e. the variables are existentially quantified. 383
 384
The following BNF defines the set of legal FIPA KIF definitions. There are three types of definitions: unrestricted, 385
complete and partial. Within each type, there are four cases, one for each category of constant. Object constants are 386
defined using the defobject operator, function constants are defined using the deffunction operator, relation 387
constants are defined using the defrelation operator and logical constants are defined using the deflogical 388
operator. 389
 390

definition ::= unrestricted | complete | partial 391
 392

unrestricted::= (defobject constant [string] sentence*) 393
| (deffunction constant [string] sentence*) 394
| (defrelation constant [string] sentence*) 395
| (deflogical constant [string] sentence*) 396

 397
complete ::= (defobject constant [string] := term) 398

| (deffunction constant (indvar* [seqvar]) [string] := term) 399
 | (defrelation constant (indvar* [seqvar]) [string] := sentence) 400
 | (deflogical constant [string] := sentence) 401
 402

partial ::= (defobject constant [string] :-> indvar :<= sentence) 403
 | (defobject constant [string] :-> indvar :=> sentence) 404
 | (deffunction constant (indvar* [seqvar]) 405
 [string] :-> indvar :<= sentence) 406
 | (deffunction constant (indvar* [seqvar]) 407
 [string] :-> indvar :=> sentence) 408
 | (defrelation constant (indvar* [seqvar]) 409
 [string] :<= sentence) 410
 | (defrelation constant (indvar* [seqvar]) 411
 [string] :=> sentence) 412
 | (deflogical constant [string] :<= sentence) 413
 | (deflogical constant [string] :=> sentence) 414
 415
A form in FIPA KIF is either a sentence or a definition. 416
 417

form ::= sentence | definition 418
 419
It is important to note that definitions are top level constructs. While definitions contain sentences, they are not 420
themselves sentences and, therefore, cannot be written as constituent parts of sentences or other definitions (unless 421
they occur inside of a quotation. 422
 423
A knowledge base is a finite set of forms. It is important to keep in mind that a knowledge base is a set of sentences, 424
not a sequence; and, therefore, the order of forms within a knowledge base is unimportant. Order may have heuristic 425

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

8

value to deductive programs by suggesting an order in which to use those sentences; however, this implicit approach to 426
knowledge exchange lies outside of the definition of FIPA KIF. 427
 428

2.2 Basics 429

2.2.1 Introduction 430

The basis for the semantics of FIPA KIF is a conceptualization of the world in terms of objects and relations among 431
those objects. 432
 433
A universe of discourse is the set of all objects presumed or hypothesized to exist in the world. The notion of object 434
used here is quite broad. Objects can be concrete, for example, a specific carbon atom, Confucius, the Sun or abstract, 435
such as the number 2, the set of all integers or the concept of justice. Objects can be primitive or composite, for 436
example, a circuit that consists of many sub circuits. Objects can even be fictional, for example, a unicorn, Sherlock 437
Holmes, etc. 438
 439
Different users of a declarative representation language, like FIPA KIF, are likely to have different universes of 440
discourse. FIPA KIF is conceptually promiscuous in that it does not require every user to share the same universe of 441
discourse. On the other hand, FIPA KIF is conceptually grounded in that every universe of discourse is required to 442
include certain basic objects. 443
 444
The following basic objects must occur in every universe of discourse: 445
 446
• All numbers, real and complex. 447
 448
• All ASCII characters. 449
 450
• All finite strings of ASCII characters. 451
 452
• Words and the things they represent. 453
 454
• All finite lists of objects in the universe of discourse. 455
 456
• Bottom. A distinguished object that occurs as the value of a partial when that function is applied to arguments for 457

which the function make no sense. 458
 459
Remember, that to these basic elements, the user can add whatever non-basic objects seem useful. 460
 461
In FIPA KIF, relationships among objects take the form of relations. Formally, a relation is defined as an arbitrary set of 462
finite lists of objects (of possibly varying lengths). Each list is a selection of objects that jointly satisfy the relation. For 463
example, the < relation on numbers contains the list <2, 3>, indicating that 2 is less than 3. 464
 465
A function is a special kind of relation. For every finite sequence of objects (called the arguments), a function associates 466
a unique object (called the value). More formally, a function is defined as a set of finite lists of objects, one for each 467
combination of possible arguments. In each list, the initial elements are the arguments, and the final element is the 468
value. For example, the 1+ function contains the list <2, 3>, indicating that integer successor of 2 is 3. 469
 470
Note that both functions and relations are defined as sets of lists. In fact, every function is a relation. However, not 471
every relation is a function. In a function, there cannot be two lists that disagree on only the last element, since this 472
would be tantamount to the function having two values for one combination of arguments. By contrast, in a relation, 473
there can be any number of lists that agree on all but the last element. For example, the list <2, 3> is a member of the 474
1+ function, and there is no other list of length 2 with 2 as its first argument, that is, there is only one successor for 2. By 475
contrast, the < relation contains the lists <2, 3>, <2, 4>, <2, 5>, and so forth, indicating that 2 is less than 3, 4, 5, and so 476
forth. 477
 478

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

9

Many mathematicians require that functions and relations have fixed arity, that is, they require that all of the lists 479
comprising a relation have the same length. The definitions here allow for relations with variable arity; it is perfectly 480
acceptable for a function or a relation to contain lists of different lengths. For example, the relation < contains the lists 481
<2, 3> and <2, 3, 4>, reflecting the fact that 2 is less than 3 and the fact that 2 is less than 3 and 3 is less than 4. This 482
flexibility is not essential, but it is extremely convenient and poses no significant theoretical problems. 483
 484

2.2.2 Bottom 485

In FIPA KIF, all functions are total, that is, there is a value for every combination of arguments. In order to allow a user 486
to express the idea that a function is not meaningful for certain arguments, FIPA KIF assumes that there is a special 487
“undefined” object in the universe and provides the object constant bottom to refer to this object. 488
 489

2.2.3 Functional Terms 490

The value of a functional term without a terminating sequence variable is obtained by applying the function denoted by 491
the function constant in the term to the objects denoted by the arguments. 492
 493
For example, the value of the term (+ 2 3) is obtained by applying the addition function (the function denoted by +) to 494
the numbers 2 and 3 (the objects denoted by the object constants 2 and 3) to obtain the value 5, which is the value of 495
the object constant 5. 496
 497
If a functional term has a terminating sequence variable, the value is obtained by applying the function to the sequence 498
of arguments formed from the values of the terms that precede the sequence variable and the values in the sequence 499
denoted by the sequence variable. 500
 501
Assume, for example, that the sequence variable @l has as value the sequence 2, 3, 4. Then, the value of the term (+ 502
1 @l) is obtained by applying the addition function to the numbers 1, 2, 3, and 4 to obtain the value 10, which is the 503
value of the object constant 10. 504
 505

2.2.4 Relational Sentences 506

A simple relational sentence without a terminating sequence variable is true if and only if the relation denoted by the 507
relation constant in the sentence is true of the objects denoted by the arguments. Equivalently, viewing a relation as a 508
set of tuples, we say that the relational sentence is true if and only if the tuple of objects formed from the values of the 509
arguments is a member of the set of tuples denoted by the relation constant. 510
 511
If a relational sentence terminates in a sequence variable, the sentence is true if and only if the relation contains the 512
tuple consisting of the values of the terms that precede the sequence variable together with the objects in the sequence 513
denoted by the variable. 514
 515

2.2.5 Equations and Inequalities 516

An equation is true if and only if the terms in the equation refer to the same object in the universe of discourse. An 517
inequality is true if and only if the terms in the equation refer to distinct objects in the universe of discourse. 518
 519

2.2.6 True and False 520

The truth-value of true is true, and the truth-value of false is false. 521
 522

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

10

2.3 Logic 523

2.3.1 Logical Terms 524

The value of a logical term involving the if operator is the value of the term following the first true sentence in the 525
argument list. For example, the term (if (> 1 2) 1 (> 2 1) 2 0) is equivalent to 2. 526
 527
If none of the embedded sentences of a logical term involving the if operator is true and there is an isolated term at the 528
end, the value of the conditional term is the value of that isolated term. For example, if the object constant a denotes a 529
number, then the term (if (> a 0) a (- a)) denotes the absolute value of that number. 530
 531
If none of the embedded sentences is true and there is no isolated term at the end, the value is undefined (that is, 532
bottom). In other words, the term (if (p a) a) is equivalent to (if (p a) a bottom). The value of a logical term 533
involving the cond operator is the value of the term following the first true sentence in the argument list. For example, 534
the term (cond ((> 1 2) 1) ((> 2 1) 2)) is equivalent to 2. 535
 536
If none of the embedded sentences is true, the value is undefined. In other words, the term (cond ((p a) a)) is 537
equivalent to (cond ((p a) a) (true bottom)). 538
 539

2.3.2 Logical Sentences 540

A negation is true if and only if the negated sentence is false. 541
 542
A conjunction is true if and only if every conjunct is true. 543
 544
A disjunction is true if and only if at least one of the disjuncts is true. 545
 546
If every antecedent in an implication is true, then the implication as a whole is true if and only if the consequent is true. If 547
any of the antecedents is false, then the implication as a whole is true, regardless of the truth-value of the consequent. 548
 549
A reverse implication is just an implication with the consequent and antecedents reversed. 550
 551
An equivalence is equivalent to the conjunction of an implication and a reverse implication. 552
 553

2.3.3 Quantified Sentences 554

A simple existentially quantified sentence (one in which the first argument is a list of variables) is true if and only if the 555
embedded sentence is true for some value of the variables mentioned in the first argument. 556
 557
A simple universally quantified sentence (one in which the first argument is a list of variables) is true if and only if the 558
embedded sentence is true for every value of the variables mentioned in the first argument. 559
 560
Quantified sentences with complicated variables specifications can be converted into simple quantified sentences by 561
replacing each complicated variable specification by the variable in the specification and adding an appropriate 562
condition into the body of the sentence. Note that, in the case of a set restriction, it may be necessary to rename 563
variables to avoid conflicts. The following pairs of sentences show the transformation from complex quantified 564
sentences to simple quantified sentences. 565
 566

(forall (... (?x r) ...) s) 567
(forall (... ?x ...) (=> (r ?x) s)) 568

 569
(exists (... (?x r) ...) s) 570
(exists (... ?x ...) (and (r ?x) s)) 571

 572
Note that the significance of free variables in quantifier-free sentences depends on context. Free variables in an 573
assertion are assumed to be universally quantified. Free variables in a query are assumed to be existentially quantified. 574

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

11

In other words, the meaning of free variables is determined by the way in which FIPA KIF is used. It cannot be 575
unambiguously defined within FIPA KIF itself. To be certain of the usage in all contexts, use explicit quantifiers. 576
 577

2.3.4 Definitions 578

The definitional operators in FIPA KIF allow us to state sentences that are true “by definition” in a way that distinguishes 579
them from sentences that express contingent properties of the world. Definitions have no truth-values in the usual 580
sense; they are so because we say that they are so. 581
 582
On the other hand, definitions have content: sentences that allow us to derive other sentences as conclusions. In FIPA 583
KIF, every definition has a corresponding set of sentences, called the content of the definition. 584
 585
The defobject operator is used to define objects. The legal forms are shown below, together with their content. In the 586
first case, the content is the equation involving the object constant in the definition with the defining term. In the second 587
case, the content is the conjunction of the constituent sentences. 588
 589

(defobject s := t) 590
(= s t) 591

 592
(defobject s p1 ... pn) 593

(and p1 ... pn) 594
 595

(defobject s :-> v :=> p) 596
(=> (= s v) p) 597

 598
(defobject s :-> v :<= p) 599

(<= (= s v) p) 600
 601
The deffunction operator is used to define functions. Again, the legal forms are shown below, together with their 602
defining axioms. In the first case, the content is the equation involving the term formed from the function constant in the 603
definition and the variables in its argument list and the defining term. In the second case, as with object definitions, the 604
content is the conjunction of the constituent sentences. 605
 606

(deffunction f (v1 ...vn) := t) 607
(= (f v1 ...vn) t) 608

 609
(deffunction f p1 ...pn) 610

(and p1 ...pn) 611
 612

(deffunction f (v1 ... vn) :-> v :=> p) 613
(=> (= (f v1 ... vn) v) p) 614

 615
(deffunction f (v1 ... vn) :-> v :<= p) 616

(<= (= (f v1 ... vn) v) p) 617
 618
The defrelation operator is used to define relations. The legal forms are shown below, together with their defining 619
axioms. In the first case, the content is the equivalence relating the relational sentence formed from the relation 620
constant in the definition and the variables in its argument list and the defining sentence. In the second case, as with 621
object and function definitions, the content is the conjunction of the constituent sentences. 622
 623

(defrelation r (v1 ...vn) := p) 624
(<=> (r v1 ...vn) p) 625

 626
(defrelation r p1 ...pn) 627

(and p1 ...pn) 628
 629

(defrelation r (v1 ... vn) :=> p) 630
(=> (r v1 ... vn) p)) 631

 632
(defrelation r (v1 ... vn) :<= p) 633

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

12

(<= (r v1 ... vn) p)) 634
 635

2.4 Numbers 636

2.4.1 Introduction 637

The referent of every numerical constant in FIPA KIF is assumed to be the number for which that constant is the base 638
10 representation. Among other things, this means that we can infer inequality of all distinct numerical constants, i.e. for 639
every t1 and distinct t2 the following sentence is true. 640
 641

(/= t1 t2) 642
 643
We use the intended meaning of numerical constants in defining the numerical functions and relations in this section. In 644
particular, we require that these functions and relations behave correctly on all numbers represented in this way. 645
 646
Note that this does mean that it is incorrect to apply these functions and relations to terms other than numbers. For 647
example, a non-numerical term may refer to a number, for example, the term two may be defined to be the same as the 648
number 2 in which case it is perfectly proper to write (+ two two). 649
 650
The user may also want to extend these functions and relations to apply to objects other than numbers, for example, 651
sets and lists. 652
 653

2.4.2 Functions on Numbers 654

• * 655
If t1, ..., tn denote numbers, then the term (* t1 ... tn) denotes the product of those numbers. 656

 657
• + 658

If t1, ..., tn are numerical constants, then the term (+ t1 ... tn) denotes the sum t of the numbers 659
corresponding to those constants. 660

 661
• - 662

If t and t1, ..., tn denote numbers, then the term (- t t1 ... tn) denotes the difference between the number 663
denoted by t and the numbers denoted by t1 through tn. An exception occurs when n=0, in which case the term 664
denotes the negation of the number denoted by t. 665

 666
• / 667

If t1, ..., tn are numbers, then the term (/ t1 ... tn) denotes the result t obtained by dividing the number 668
denoted by t1 by the numbers denoted by t2 through tn. An exception occurs when n=1, in which case the term 669
denotes the reciprocal t of the number denoted by t1. 670

 671
• 1+ 672

The term (1+ t) denotes the sum of the object denoted by t and 1. 673
 674

(deffunction 1+ (?x) := (+ ?x 1)) 675
 676
• 1- 677

The term (1- t) denotes the difference of the object denoted by t and 1. 678
 679

(deffunction 1- (?x) := (- ?x 1)) 680
 681
• abs 682

The term (abs t) denotes the absolute value of the object denoted by t. 683
 684

(deffunction abs (?x) := (if (>= ?x 0) ?x (- ?x))) 685

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

13

 686
• ceiling 687

If t denotes a real number, then the term (ceiling t) denotes the smallest integer greater than or equal to the 688
number denoted by t. 689

 690
• denominator 691

The term (denominator t) denotes the denominator of the canonical reduced form of the object denoted by t. 692
 693
• expt 694

The term (expt t1 t2) denotes the object denoted by t1 raised to the power the object denoted by t2. 695
 696
• floor 697

The term (floor t) denotes the largest integer less than the object denoted by t. 698
 699
• gcd 700

The term (gcd t1 ... tn) denotes the greatest common divisor of the objects denoted by t1 through tn. 701
 702
• imagpart 703

The term (imagpart t) denotes the imaginary part of the object denoted by t. 704
 705
• lcm 706

The term (lcm t1 ... tn) denotes the least common multiple of the objects denoted by t1, ..., tn. 707
 708
• log 709

The term (log t1 t2) denotes the logarithm of the object denoted by t1 in the base denoted by t2. 710
 711
• max 712

The term (max t1 ... tk) denotes the largest object denoted by t1 through tn. 713
 714
• min 715

The term (min t1 ... tk) denotes the smallest object denoted by t1 through tn. 716
 717
• mod 718

The term (mod t1 t2) denotes the root of the object denoted by t1 modulo the object denoted by t2. The result 719
will have the same sign as denoted by t1. 720

 721
• numerator 722

The term (numerator t) denotes the numerator of the canonical reduced form of the object denoted by t. 723
 724
• realpart 725

The term (realpart t) denotes the real part of the object denoted by t. 726
 727
• rem 728

The term (rem t1 t2) denotes the remainder of the object denoted by t1 divided by the object denoted by t2. 729
The result has the same sign as the object denoted by t2. 730

 731
• round 732

The term (round t) denotes the integer nearest to the object denoted by t. If the object denoted by t is halfway 733
between two integers (for example 3.5), it denotes the nearest integer divisible by 2. 734

 735
• sqrt 736

The term (sqrt t) denotes the principal square root of the object denoted by t. 737
 738
• truncate 739

The term (truncate t) denotes the largest integer less than the object denoted by t. 740

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

14

 741

2.4.3 Relations on Numbers 742

• integer 743
The sentence (integer t) means that the object denoted by t is an integer. 744

 745
• real 746

The sentence (real t) means that the object denoted by t is a real number. 747
 748
• complex 749

The sentence (complex t) means that the object denoted by t is a complex number. 750
 751

(defrelation number (?x) := (or (real ?x) (complex ?x))) 752
 753

(defrelation natural (?x) := (and (integer ?x) (>= ?x 0))) 754
 755

(defrelation rational (?x) := 756
(exists (?y) (and (integer ?y) (integer (* ?x ?y))))) 757

 758
• approx 759

The sentence (approx t1 t2 t) is true if and only if the number denoted by t1 is “approximately equal” to the 760
number denoted by t2, that is, the absolute value of the difference between the numbers denoted by t1 and t2 is 761
less than or equal to the number denoted by t. 762

 763
• < 764

The sentence (< t1 t2) is true if and only if the number denoted by t1 is less than the number denoted by t2. 765
 766

(defrelation > (?x ?y) := (< ?y ?x)) 767
 768

(defrelation =< (?x ?y) := (or (= ?x ?y) (< ?x ?y))) 769
 770

(defrelation >= (?x ?y) := (or (> ?x ?y) (= ?x ?y))) 771
 772

(defrelation positive (?x) := (> ?x 0)) 773
 774

(defrelation negative (?x) := (< ?x 0)) 775
 776

(defrelation zero (?x) := (= ?x 0)) 777
 778

(defrelation odd (?x) := (integer (/ (+ ?x 1) 2)) 779
 780

(defrelation even (?x) := (integer (/ ?x 2)) 781
 782

2.5 Lists 783

A list is a finite sequence of objects. Any objects in the universe of discourse may be elements of a list. 784
 785
In FIPA KIF, we use the term (listof t1 ... tk) to denote the list of objects denoted by t1, ..., tk. For example, the 786
following expression denotes the list of an object named mary, a list of objects named tom, dick and harry, and an 787
object named sally. 788
 789

(listof mary (listof tom dick harry) sally) 790
 791
The relation list is the type predicate for lists. An object is a list if and only if there is a corresponding expression 792
involving the listof operator. 793
 794
 (defrelation list (?x) := (exists (@l) (= ?x (listof @l)))) 795
 796

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

15

The object constant nil denotes the empty list and also tests whether or not an object is the empty list. The relation 797
constants single, double and triple allow us to assert the length of lists containing one, two or three elements, 798
respectively. 799
 800
 (defobject nil := (listof)) 801
 802
 (defrelation null (?l) := (= ?l (listof))) 803
 804
 (defrelation single (?l) := (exists (?x) (= ?l (listof ?x)))) 805
 806
 (defrelation double (?l) := (exists (?x ?y) (= ?l (listof ?x ?y)))) 807
 808
 (defrelation triple (?l) := (exists (?x ?y ?z) (= ?l (listof ?x ?y ?z)))) 809
 810
The functions first, rest, last and butlast each take a single list as argument and select individual items or sub 811
lists from those lists. 812
 813

(deffunction first (?l) := (if (= (listof ?x @items) ?l) ?x) 814
 815

(deffunction rest (?l) := 816
(cond ((null ?l) ?l) 817

 ((= ?l (listof ?x @items)) (listof @items)))) 818
 819

(deffunction last (?l) := 820
 (cond ((null ?l) bottom) ((null (rest ?l)) (first ?l)) 821
 (true (last (rest ?l))))) 822
 823

(deffunction butlast (?l) := 824
(cond ((null ?l) bottom) ((null (rest ?l)) nil) 825

 (true (cons (first ?l) (butlast (rest ?l)))))) 826
 827
The sentence (item t1 t2) is true if and only if the object denoted by t2 is a non-empty list and the object denoted by 828
t1 is either the first item of that list or an item in the rest of the list. 829
 830

(defrelation item (?x ?l) := 831
(and (list ?l) (not (null ?l)) 832

(or (= ?x (first ?l)) (item ?x (rest ?l))))) 833
 834
The sentence (sublist t1 t2) is true if and only if the object denoted by t1 is a final segment of the list denoted by 835
t2. 836
 837

(defrelation sublist (?l1 ?l2) := 838
(and (list ?l1) (list ?l2) 839

(or (= ?l1 ?l2) (sublist ?l1 (rest ?l2))))) 840
 841
The function cons adds the object specified as its first argument to the front of the list specified as its second argument. 842
 843

(deffunction cons (?x ?l) := 844
(if (= ?l (listof @l)) (listof ?x @l))) 845

 846
The function append adds the items in the list specified as its first argument to the list specified as its second 847
argument. The function revappend is similar, except that it adds the items in reverse order. 848
 849

(deffunction append (?l1 ?l2) := 850
(cond ((null ?l1) (if (list ?l2) ?l2)) 851

((list ?l1) (cons (first ?l1) (append (rest ?l1) ?l2))))) 852
 853

(deffunction revappend (?l1 ?l2) := 854
(cond ((null ?l1) (if (list ?l2) ?l2)) 855

((list ?l1) (revappend (rest ?l1) (cons (first ?l1) ?l2))))) 856

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

16

 857
The function reverse produces a list in which the order of items is the reverse of that in the list supplied as its single 858
argument. 859
 860

(deffunction reverse (?l) := (revappend ?l (listof))) 861
 862
The functions adjoin and remove construct lists by adding or removing objects from the lists specified as their 863
arguments. 864
 865
 (deffunction adjoin (?x ?l) := (if (item ?x ?l) ?l (cons ?x ?l))) 866
 867
 (deffunction remove (?x ?l) := 868

(cond ((null ?l) nil) ((and (= ?x (first ?l)) (list ?l)) 869
(remove ?x (rest ?l))) 870
((list ?l) (cons ?x (remove ?x (rest ?l)))))) 871

 872
The value of subst is the object or list obtained by substituting the object supplied as first argument for all occurrences 873
of the object supplied as second argument in the object or list supplied as third argument. 874
 875

(deffunction subst (?x ?y ?z) := 876
(cond ((= ?y ?z) ?x) ((null ?z) nil) 877

 ((list ?z) (cons (subst ?x ?y (first ?z)) 878
(subst ?x ?y (rest ?z)))) 879
(true ?z))) 880

 881
The function length gives the number of items in a list. The function nth returns the item in the list specified as its first 882
argument in the position specified as its second argument. The function nthrest returns the list specified as its first 883
argument minus the first n items, where n is the number specified as its second argument. 884
 885

(deffunction length (?l) := 886
(cond ((null ?l) 0) 887

((list ?l) (1+ (length (rest ?l)))))) 888
 889

(deffunction nth (?l ?n) := 890
(cond ((= ?n 1) (first ?l)) 891

((and (list ?l) (positive ?n)) (nth (rest ?l) (1- ?n))))) 892
 893

(deffunction nthrest (?l ?n) := 894
(cond ((= ?n 0) (if (list ?l) ?l)) 895

((and (list ?l) (positive ?n)) (nthrest (rest ?l) (1- ?n))))) 896
 897

2.6 Characters and Strings 898

2.6.1 Characters 899

A character is a printed symbol, such as a digit or a letter. There are 128 distinct characters known to FIPA KIF, 900
corresponding to the 128 possible combinations of bits in the ASCII encoding. In FIPA KIF, there are two ways to refer 901
to characters. 902
 903
The first method is use of the charref syntax, that is, the characters # and \, followed by the character to be 904
represented. While this method works for all 128 characters, it is less than ideal for documents like this one, because of 905
the difficulty of writing out non-printing characters. Using this method, it is also difficult to assert properties of some 906
classes of characters. For this reason, FIPA KIF supports an alternative method of specification, viz. the use of the 7 bit 907
code corresponding to the character. The relationship between characters and their numerical codes is given via the 908
functions char-code and code-char. The former maps the nth character cn into the corresponding 7-bit integer n, and 909
the latter maps a 7-bit integer n into the corresponding character cn. The values of these functions on all other 910
arguments are undefined. 911
 912

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

17

(= (char-code #\cn) n) 913
 914

(= (code-char n) #\cn) 915
 916
The relation character is true of the characters of FIPA KIF and no other objects. 917
 918
 (defrelation character (?x) := 919

(exists ((?n natural-number)) (and (>= ?n 0) (< ?n 128) 920
(= (code-char ?n) ?x)))) 921

 922

2.6.2 Strings 923

A string is a list of characters. One way of referring to strings is through the use of the string syntax described in Section 924
2.1.3, Lexemes. In this method, we refer to the string abc by enclosing it in double quotes, such as, "abc". 925
 926
A second way is through the use of character blocks, the block syntax described in Section 2.1.3, Lexemes. In this 927
method, we refer to the string abc by prefixing with the character #, a positive integer indicating the length, the letter q, 928
and the characters of the string, for example, #3qabc. 929
 930
A third way of referring to strings is to use the listof function. For example, we can denote the string abc by a term of 931
the form (listof #\a #\b #\c). The advantage of the listof representation over the preceding representations 932
is that it allows us to quantify over characters within strings. For example, the following sentence says that all 3 933
character strings beginning with a and ending with a are nice. 934
 935
 (=> (character ?y) (nice (listof #\a ?y #\a))) 936
 937
From this sentence, we can infer that various strings are nice. 938
 939
 (nice (listof #\a #\a #\a)) 940
 (nice "aba") 941
 (nice #\Qaca) 942
 943

2.7 Meta Knowledge 944

2.7.1 Naming Expressions 945

In formalizing knowledge about knowledge, we use a conceptualization in which expressions are treated as objects in 946
the universe of discourse and in which there are functions and relations appropriate to these objects. In our 947
conceptualization, we treat atoms as primitive objects with no subparts. We conceptualize complex expressions as lists 948
of subexpressions (either atoms or other complex expressions). In particular, every complex expression is viewed as a 949
list of its immediate subexpressions. 950
 951
For example, we conceptualize the sentence (not (p (+ a b c) d)) as a list consisting of the operator not and the 952
sentence (p (+ a b c) d). This sentence is treated as a list consisting of the relation constant p and the terms (+ a b 953
c) and d. The first of these terms is a list consisting of the function constant + and the object constants a, b and c. 954
 955
For Lisp programmers, this conceptualization is relatively obvious, but it departs from the usual conceptualization of 956
formal languages taken in the mathematical theory of logic. It has the disadvantage that we cannot describe certain 957
details of syntax such as parenthesization and spacing (unless we augment the conceptualization to include string 958
representations of expressions as well). However, it is far more convenient for expressing properties of knowledge and 959
inference than string-based conceptualizations. 960
 961
In order to assert properties of expressions in the language, we need a way of referring to those expressions. There are 962
two ways of doing this in FIPA KIF. 963
 964

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

18

One way is to use the quote operator in front of an expression. To refer to the symbol john, we use the term 'john or, 965
equivalently, (quote john). To refer to the expression (p a b), we use the term '(p a b) or, equivalently, (quote 966
(p a b)). 967
 968
With a way of referring to expressions, we can assert their properties. For example, the following sentence ascribes to 969
the individual named john the belief that the moon is made of a particular kind of blue cheese. 970
 971
 (believes john '(material moon stilton)) 972
 973
Note that, by nesting quotes within quotes, we can talk about quoted expressions. In fact, we can write towers of 974
sentences of arbitrary heights, in which the sentences at each level talk about the sentences at the lower levels. 975
 976
Since expressions are first-order objects, we can quantify over them, thereby asserting properties of whole classes of 977
sentences. For example, we could say that Mary believes everything that John believes. This fact together with the 978
preceding fact allows us to conclude that Mary also believes the moon to be made of blue cheese. 979
 980
 (=> (believes john ?p) (believes mary ?p)) 981
 982
The second way of referring to expressions is FIPA KIF is to use the listof function. For example, we can denote a 983
complex expression like (p a b) by a term of the form (listof 'p 'a 'b), as well as '(p a b). 984
 985
The advantage of the listof representation over the quote representation is that it allows us to quantify over parts of 986
expressions. For example, let us say that Lisa is more sceptical than Mary. She agrees with John, but only on the 987
composition of things. The first sentence below asserts this fact without specifically mentioning moon or stilton. Thus, if 988
we were to later discover that John thought the sun to be made of chilli peppers, then Lisa would be constrained to 989
believe this as well. 990
 991

(=> (believes john (listof 'material ?x ?y)) 992
(believes lisa (listof 'material ?x ?y))) 993

 994
While the use of listof allows us to describe the structure of expressions in arbitrary detail, it is somewhat awkward. 995
For example, the term (listof 'material ?x ?y) is somewhat awkward. Fortunately, we can eliminate this difficulty 996
using the up arrow (^) and comma (,) characters. Rather than using the listof function constant as described above, 997
we write the expression preceded by ^ and , in front of any subexpression that is not to be taken literally. For example, 998
we would rewrite the preceding sentence as follows. 999
 1000

(=> (believes john ^(material ,?x ,?y)) 1001
(believes lisa ^(material ,?x ,?y))) 1002

 1003

2.7.2 Types of Expressions 1004

In order to facilitate the encoding of knowledge about FIPA KIF, the language includes type relations for the various 1005
syntactic categories defined in Section 2.1, Syntax. 1006
 1007
For every individual variable v, there is an axiom asserting that it is indeed an individual variable. Each such axiom is a 1008
defining axiom for the indvar relation. 1009
 1010

(indvar (quote v)) 1011
 1012
For every sequence variable s, there is an axiom asserting that it is a sequence variable. Each such axiom is a defining 1013
axiom for the seqvar relation. 1014
 1015

(indvar (quote s)) 1016
 1017
For every word w, there is an axiom asserting that it is a word. Each such axiom is a defining axiom for the word 1018
relation. 1019
 1020

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

19

(word (quote w)) 1021
 1022
Using this basic vocabulary and our vocabulary for lists, it is possible to define type relations for all types of syntactic 1023
expressions in FIPA KIF. 1024
 1025

2.7.3 Changing Levels of Denotation 1026

Logicians frequently use axiom schemata to encode (potentially infinite) sets of sentences with particular syntactic 1027
properties. As an example, consider the axiom schema shown below, where we are told that r stands for an arbitrary 1028
relation constant. 1029
 1030

(=> (and (r 0) (forall (?n) (=> (r ?n) (r (1+ ?n))))) (forall (?n) (r ?n))) 1031
 1032
This schema encodes infinitely many sentences, the principle of mathematical induction for named relations. The 1033
following sentences are instances: 1034
 1035

(=> (and (p 0) (forall (?n) (=> (p ?n) (p (1+ ?n))))) (forall (?n) (p ?n))) 1036
 1037

(=> (and (q 0) (forall (?n) (=> (q ?n) (q (1+ ?n))))) (forall (?n) (q ?n))) 1038
 1039
Axiom schemata are differentiated from axioms due to the presence of meta-variables or other meta-linguistic notation 1040
(such as dots or star notation), together with conditions on the variables. They describe sentences in a language, but 1041
they are not themselves sentences in the language. As a result, they cannot be manipulated by procedures designed to 1042
process the language (presentation, storage, communication, deduction and so forth) but instead must be hard coded 1043
into those procedures. 1044
 1045
As we have seen, it is possible in FIPA KIF to write expressions that describe FIPA KIF sentences. As it turns out, there 1046
is also a way to write sentences that assert the truth of the sentences so described. The effect of adding such meta-1047
level sentences to a knowledge base is the same as directly including the (potentially infinite) set of described 1048
sentences in the knowledge base. 1049
 1050
The use of such a language simplifies the construction of knowledge-based systems, since it obviates the need for 1051
building axiom schemata into deductive procedures. It also makes it possible for systems to exchange axiom schemata 1052
with each other and thereby promotes knowledge sharing. 1053
 1054
The FIPA KIF truth predicate is called wtr (which stands for “weakly true”). For example, we can say that a sentence of 1055
the form (=> (p ?x) (q ?x)) is true by writing the following sentence. 1056
 1057
 (wtr '(=> (p ?x) (q ?x))) 1058
 1059
This may seem of limited utility, since we can just write the sentence denoted by the argument as a sentence in its own 1060
right. The advantage of the meta-notation becomes clear when we need to quantify over sentences, as in the encoding 1061
of axiom schemata. For example, we can say that every sentence of the form (=> p p) is true with the following 1062
sentence. (The relation sentence can easily be defined in terms of quote, listof, indvar, seqvar and word.) 1063
 1064
 (=> (sentence ?p) (wtr ^(=> ,?p ,?p))) 1065
 1066
Semantically, we would like to say that a sentence of the form (wtr 'p) is true if and only if the sentence p is true. 1067
Unfortunately, this causes serious problems. Equating a truth function with the meaning it ascribes to wtr quickly leads 1068
to paradoxes. The English sentence “This sentence is false” illustrates the paradox. We can write this sentence in FIPA 1069
KIF as shown below. The sentence, in effect, asserts its own negation. 1070
 1071

(wtr (subst (name ^(subst (name x) ^x ^(truth ,x))) 1072
^x 1073
^(not (wtr (subst (name x) ^x ^(not (wtr ,x))))))) 1074

 1075

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

20

No matter how we interpret this sentence, we get a contradiction. If we assume the sentence is true, then we have a 1076
problem because the sentence asserts its own falsity. If we assume the sentence is false, we also have a problem 1077
because the sentence then is necessarily true. 1078
 1079
Fortunately, we can circumvent such paradoxes by slightly modifying the proposed definition of wtr. In particular, we 1080
have the following axiom schema for all p that do not contain any occurrences of wtr. For all p that do contain 1081
occurrences, wtr is false. 1082
 1083
 (<=> (wtr 'p) p) 1084
 1085
With this modified definition, the paradox described above disappears, yet we retain the ability to write virtually all useful 1086
axiom schemata as meta-level axioms. 1087
 1088
From the point of view of formalizing truth, wtr is a not particularly useful, since it fails to cover those interesting cases 1089
where sentences contain the truth predicate. However, from the point of view of capturing axiom schemata not 1090
involving the truth predicate, it works just fine. Furthermore, unlike the solutions to the problem of formalizing truth, 1091
the framework presented here is easy for users to understand, and it is easy to implement. 1092
 1093
Two other constants round out FIPA KIF's level-crossing vocabulary. The term (denotation t) denotes the object 1094
denoted by the object denoted by t. A quotation denotes the quoted expression; the denotation of any other object is 1095
bottom. As with wtr, the dentotation of a quoted expression is the embedded expression, provided that the expression 1096
does not contain any occurrences of denotation. Otherwise, the value is undefined. 1097
 1098
 (= (denotation 't) t) 1099
 1100
The term (name t) denotes the standard name for the object denoted by the term t. The standard name for an 1101
expression t is (quote t); the standard name for a non-expression is at the discretion of the user. (Note that there are 1102
only a countable number of terms in FIPA KIF, but there can be worlds with uncountable cardinality; consequently, it is 1103
not always possible for every object to have a unique name.) 1104
 1105

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

21

3 References 1106

[FIPA00061] FIPA ACL Message Structure Specification. Foundation for Intelligent Physical Agents, 2000. 1107
http://www.fipa.org/specs/fipa00061/ 1108

[ISO646] Information Technology – ISO 7-bit Coded Character Set for Information Interchange, ISO 646:1991. 1109
International Standards Organisation, 1991. 1110
http://www.iso.ch/cate/d4777.html 1111

[ISO10646] Information Technology – Universal Multiple-Octet Coded Character Set (UCS), ISO 10646-1:1993. 1112
International Standards Organisation, 1993. 1113
http://www.iso.ch/cate/d18741.html 1114

[ISO14481] Information Technology – Conceptual Schema Modelling Facilities (CSMF), ISO 14481:1998. 1115
International Standards Organisation, 1998. 1116

 1117

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

22

4 Informative Annex A — Examples 1118

1. The following FIPA ACL message with the content in FIPA KIF informs that database-agent1 specializes 1119
handling the sentence '(price ,?x ,?y) where ?x is a constant and ?y is a number. Note that the 1120
communicative act inform takes a proposition as its content. 1121

(inform 1122
 :sender 1123
 (agent-identifier 1124
 :name database-agent1) 1125
 :receiver 1126
 (agent-identifier 1127
 :name facilitator1) 1128
 :language FIPA-KIF 1129
 :ontology ec-ontology 1130
 :content 1131
 (<= (specialist agent1 '(price ,?x ,?y)) 1132
 (constant ?x) 1133
 (number ?y))) 1134

 1135
2. This message informs that database-agent1 conforms to the conformance profile database-system (see 1136

[ANSkif] for conformance details). 1137
 1138

(inform 1139
 :sender 1140
 (agent-identifier 1141
 :name database-agent1) 1142
 :receiver 1143
 (agent-identifier 1144
 :name facilitator1) 1145
 :language FIPA-KIF 1146
 :ontology ec-ontology 1147
 :content 1148
 (conformance-profile database-agent1 database-system)) 1149

 1150
3. This message informs that database-agent1's conformance dimensions are horn, non-recursive, simple, 1151

first-order, universal and baselevel (see [ANSkif] for conformance details). 1152
 1153

(inform 1154
 :sender 1155
 (agent-identifier 1156
 :name database-agent1) 1157
 :receiver 1158
 (agent-identifier 1159
 :name facilitator1) 1160
 :language FIPA-KIF 1161
 :ontology ec-ontology 1162
 :content 1163
 (conformance-dimension database-agent1 1164
 (horn non-recursive simple first-order universal baselevel))) 1165

 1166
4. This message denies the message of the example in 1. Note that the communicative act disconfirm takes a 1167

proposition as its content. 1168
 1169

(disconfirm 1170
 :sender 1171
 (agent-identifier 1172
 :name database-agent1) 1173
 :receiver 1174
 (agent-identifier 1175
 :name facilitator1) 1176

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

23

 :language FIPA-KIF 1177
 :ontology ec-ontology 1178
 :content 1179
 (<= (specialist agent1 '(price ,?x ,?y)) 1180
 (constant ?x) (number ?y))) 1181

 1182
5. This message expresses a query by the agent, facilitator1 to the agent, database-agent1. Note that the 1183

communicative act query-ref takes an object as its content. 1184
 1185

(query-ref 1186
 :sender 1187
 (agent-identifier 1188
 :name facilitator1) 1189
 :receiver 1190
 (agent-identifier 1191
 :name database-agent1) 1192
 :language FIPA-KIF 1193
 :ontology ec-ontology 1194
 :content 1195
 (kappa (?make ?door ?price) 1196
 (and (car ?car) (make ?car ?make) 1197
 (doors ?car ?doors) (price ?car ?price)))) 1198

 1199
6. This message expresses the answer to the query of the previous example by the agent, database-agent1 to the 1200

agent, facilitator1: 1201
 1202

(inform 1203
 :sender 1204
 (agent-identifier 1205
 :name database-agent1) 1206
 :receiver 1207
 (agent-identifier 1208
 :name facilitator1) 1209
 :language FIPA-KIF 1210
 :ontology ec-ontology 1211
 :content 1212
 (= (kappa (?make ?door ?price) 1213
 (and (car ?car) (make ?car ?make) 1214
 (doors ?car ?doors) (price ?car ?price))) 1215
 '((Mercedes 4 100,000) (Honda 2 20,000) (Toyota 4 25,000)))) 1216

 1217

© 2000 Foundation for Intelligent Physical Agents FIPA KIF Content Language

24

5 Informative Annex B — ChangeLog 1218

5.1 2003/01/28 - version C by FIPA Architecture Board 1219

Entire document: Added omitted `>` characters, fixed some other omissions 1220
 1221

