
FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 1
___ 2

 3

FIPA 97 Specification 4

Part 3 5

Agent Software Integration 6
 7

Obsolete 8
 9
 10
Publication date : 10th October 1997 11
© 1997 FIPA- Foundation for Intelligent Physical Agents 12
Geneva, Switzerland 13
 14
 15
 16
 17
Notice 18
Use of the technologies described in this specification may infringe patents, copyrights or other 19
intellectual property rights of FIPA Members and non-members. Nothing in this specification should 20
be construed as granting permission to use any of the technologies described. Anyone planning to 21
make use of technology covered by the intellectual property rights of others should first obtain 22
permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any 23
part of this specification to determine first whether part(s) sought to be implemented are covered 24
by the intellectual property of others, and, if so, to obtain appropriate licences or other permission 25
from the holder(s) of such intellectual property prior to implementation. This FIPA 97 Specification 26
is subject to change without notice. Neither FIPA nor any of its Members accept any responsibility 27
whatsoever for damages or liability, direct or consequential, which may result from the use of this 28
specification. 29
 30

Contents 31

1 Scope... 1111 32
2 Normative reference(s) ... 1111 33
3 Term(s) and definition(s).. 1111 34
4 Symbols (and abbreviated terms) ... 3333 35
5 Overview of Agent Software Integration.. 5555 36
6 Normative Specification ... 8888 37
6.1 Reference Model... 8888 38
6.2 Agent Resource Broker service. .. 11111111 39
6.2.1 FIPA-ARB Ontology ... 11111111 40
6.2.2 Querying the ARB .. 17171717 41
6.2.3 Registering the ARB service with the DF .. 17171717 42
6.2.4 Conformance ... 17171717 43
6.3 Wrapper Service ... 19191919 44
6.3.1 FIPA-WRAPPER Ontology ... 19191919 45
6.3.2 Querying the WRAPPER .. 28282828 46
6.3.3 Registering the WRAPPER service with the DF .. 29292929 47
6.3.4 Conformance ... 29292929 48
Annex A (normative) EBNF Grammar for FIPA-ARB Ontology ... 31313131 49
Annex B (normative) EBNF Grammar for FIPA-WRAPPER Ontology 33333333 50
 51

FIPA 97 version 1.0, Part 3 © FIPA (1997)

iii

Foreword 52

The Foundation for Intelligent Physical Agents (FIPA) is a non-profit association registered in Geneva, Switzerland. 53
FIPA’s purpose is to promote the success of emerging agent-based applications, services and equipment. This goal is 54
pursued by making available in a timely manner, internationally agreed specifications that maximise interoperability 55
across agent-based applications, services and equipment. This is realised through the open international collaboration 56
of member organisations, which are companies and universities active in the agent field. FIPA intends to make the 57
results of its activities available to all interested parties and to contribute the results of its activities to appropriate formal 58
standards bodies. 59
This specification has been developed through direct involvement of the FIPA membership. The 35 60
corporate members of FIPA (October 1997) represent 12 countries from all over the world 61
Membership in FIPA is open to any corporation and individual firm, partnership, governmental 62
body or international organisation without restriction. By joining FIPA each Member declares 63
himself individually and collectively committed to open competition in the development of agent-64
based applications, services and equipment. Associate Member status is usually chosen by those 65
entities who do want to be members of FIPA without using the right to influence the precise 66
content of the specifications through voting. 67
The Members are not restricted in any way from designing, developing, marketing and/or procuring agent-based 68
applications, services and equipment. Members are not bound to implement or use specific agent-based standards, 69
recommendations and FIPA specifications by virtue of their participation in FIPA. 70

This specification is published as FIPA 97 ver. 1.0 after two previous versions have been subject to public comments 71
following disclosure on the WWW. It has undergone intense review by members as well non-members. FIPA is now 72
starting a validation phase by encouraging its members to carry out field trials that are based on this specification. 73
During 1998 FIPA will publish FIPA 97 ver. 2.0 that will incorporate whatever adaptations will be deemed necessary to 74
take into account the results of field trials. 75

FIPA 97 version 1.0, Part 3 © FIPA (1997)

iv

Introduction 76

This FIPA 97 specification is the first output of the Foundation for Intelligent Physical Agents. It 77
provides specification of basic agent technologies that can be integrated by agent systems 78
developers to make complex systems with a high degree of interoperability. 79
FIPA specifies the interfaces of the different components in the environment with which an agent 80
can interact, i.e. humans, other agents, non-agent software and the physical world. See figure 81
below 82

AAA
Other
Agents

1.2.a

1.2.b

Agent Interaction
2.2

1.2.cHardware

Software

A

Information
Fusion

Information
Processing

Environment

x.3

Humans

 83
 84
FIPA produces two kinds of specification: 85
 normative specifications that mandate the external behaviour of an agent and ensure 86

interoperability with other FIPA-specified subsystems; 87
 informative specifications of applications for guidance to industry on the use of FIPA 88

technologies. 89
The first set of specifications – called FIPA 97 – has seven parts: 90
 three normative parts for basic agent technologies: agent management, agent communication 91

language and agent/software integration 92
 four informative application descriptions that provide examples of how the normative items can 93

be applied: personal travel assistance, personal assistant, audio-visual entertainment and 94
broadcasting and network management and provisioning. 95

Overall, the three FIPA 97 technologies allow: 96
 the construction and management of an agent system composed of different agents, possibly 97

built by different developers; 98
 agents to communicate and interact with each other to achieve individual or common goals; 99
 legacy software or new non-agent software systems to be used by agents. 100
 101

FIPA 97 version 1.0, Part 3 © FIPA (1997)

v

A brief illustration of FIPA 97 specification is given below 102
Part 1 Agent Management 103
This part of FIPA 97 provides a normative framework within which FIPA compliant agents can 104
exist, operate and be managed. 105
It defines an agent platform reference model containing such capabilities as white and yellow 106
pages, message routing and life-cycle management. True to the FIPA approach, these capablities 107
are themselves intelligent agents using formally sound communicative acts based on special 108
message sets. An appropriate ontology and content language allows agents to discover each 109
other’s capabilities. 110
Part 2 Agent Communication Language 111
The FIPA Agent Communication Language (ACL) is based on speech act theory: messages are 112
actions, or communicative acts, as they are intended to perform some action by virtue of being 113
sent. The specification consists of a set of message types and the description of their pragmatics, 114
that is the effects on the mental attitudes of the sender and receiver agents. Every communicative 115
act is described with both a narrative form and a formal semantics based on modal logic. 116
The specifications include guidance to users who are already familiar with KQML in order to 117
facilitate migration to the FIPA ACL. 118
The specification also provides the normative description of a set of high-level interaction 119
protocols, including requesting an action, contract net and several kinds of auctions etc. 120
Part 3 Agent/Software Integration 121
This part applies to any other non-agentised software with which agents need to “connect”. Such 122
software includes legacy software, conventional database systems, middleware for all manners of 123
interaction including hardware drivers. Because in most significant applications, non-agentised 124
software may dominate software agents, part 3 provides important normative statements. It 125
suggests ways by which Agents may connect to software via “wrappers” including specifications of 126
the wrapper ontology and the software dynamic registration mechanism. For this purpose, an 127
Agent Resource Broker (ARB) service is defined which allows advertisement of non-agent services 128
in the agent domain and management of their use by other agents, such as negotiation of 129
parameters (e.g. cost and priority), authentication and permission. 130
Part 4 - Personal Travel Assistance 131
The travel industry involves many components such as content providers, brokers, and 132
personalization services, typically from many different companies. In applying agents to this 133
industry, various implementations from various vendors must interoperate and dynamically 134
discover each other as different services come and go. Agents operating on behalf of their users 135
can provide assistance in the pre-trip planning phase, as well as during the on-trip execution 136
phase. A system supporting these services is called a PTA (Personal Travel Agent). 137
In order to accomplish this assistance, the PTA interacts with the user and with other agents, 138
representing the available travel services. The agent system is responsible for the configuration 139
and delivery - at the right time, cost, Quality of Service, and appropriate security and privacy 140
measures - of trip planning and guidance services. It provides examples of agent technologies for 141
both the hard requirements of travel such as airline, hotel, and car arrangements as well as the 142
soft added-value services according to personal profiles, e.g. interests in sports, theatre, or other 143
attractions and events. 144
Part 5 - Personal Assistant 145
One central class of intelligent agents is that of a personal assistant (PA). It is a software agent 146
that acts semi-autonomously for and on behalf of a user, modelling the interests of the user and 147
providing services to the user or other people and PAs as and when required. These services 148
include managing a user's diary, filtering and sorting e-mail, managing the user's activities, locating 149
and delivering (multimedia) information, and planning entertainment and travel. It is like a 150

FIPA 97 version 1.0, Part 3 © FIPA (1997)

vi

secretary, it accomplishes routine support tasks to allow the user to concentrate on the real job, it 151
is unobtrusive but ready when needed, rich in knowledge about user and work. Some of the 152
services may be provided by other agents (e.g. the PTA) or systems, the Personal Assistant acts 153
as an interface between the user and these systems. 154
In the FIPA 97 test application, a Personal Assistant offers the user a unified, intelligent interface 155
to the management of his personal meeting schedule. The PA is capable of setting up meetings 156
with several participants, possibly involving travel for some of them. In this way FIPA is opening up 157
a road for adding interoperability and agent capabilities to the already established. 158

Part 6 - Audio/Video Entertainment & Broadcasting 159
An effective means of information filtering and retrieval, in particular for digital broadcasting 160
networks, is of great importance because the selection and/or storage of one’s favourite choice 161
from plenty of programs on offer can be very impractical. The information should be provided in a 162
customised manner, to better suit the user’s personal preferences and the human interaction with 163
the system should be as simple and intuitive as possible. Key functionalities such as profiling, 164
filtering, retrieving, and interfacing can be made more effective and reliable by the use of agent 165
technologies. 166
Overall, the application provides to the user an intelligent interface with new and improved 167
functionalities for the negotiation, filtering, and retrieval of audio-visual information. This set of 168
functionalities can be achieved by collaboration between a user agent and content/service provider 169
agent. 170
Part 7 - Network management & provisioning 171
Across the world, numerous service providers emerge that combine service elements from 172
different network providers in order to provide a single service to the end customer. The ultimate 173
goal of all parties involved is to find the best deals available in terms of Quality of Service and cost. 174
Intelligent Agent technology is promising in the sense that it will facilitate automatic negotiation of 175
appropriate deals and configuration of services at different levels. 176
Part 7 of FIPA 1997 utilizes agent technology to provide dynamic Virtual Private Network (VPN) 177
services where a user wants to set up a multi-media connection with several other users. 178
The service is delivered to the end customer using co-operating and negotiating specialized 179
agents. Three types of agents are used that represent the interests of the different parties 180
involved: 181
 The Personal Communications Agent (PCA) that represents the interests of the human users. 182
 The Service Provider Agent (SPA) that represents the interests of the Service Provider. 183
 The Network Provider Agent (NPA) that represents the interests of the Network Provider. 184
The service is established by the initiating user who requests the service from its PCA. The PCA 185
negotiates in with available SPAs to obtain the best deal available. The SPA will in turn negotiate 186
with the NPAs to obtain the optimal solution and to configure the service at network level. Both 187
SPA and NPA communicate with underlying service- and network management systems to 188
configure the underlying networks for the service. 189

Page 1

FIPA Agent Software / Integration 190

1 Scope 191

This document provides a specification which deals with technologies enabling the integration of 192
services provided by non-agent software into a multi-agent community. This part of the FIPA 97 193
International Standard defines in general the relationship between agents and software systems. 194
The purpose of this standard is twofold: it allows agents to describe, broker and negotiate over 195
software systems; and it allows new software services to be dynamically introduced into an agent 196
community. The specification defines a reference model, identifying agent roles (e.g. broker, client, 197
etc.) and the messages / actions which define each of these roles. It builds upon the [PART2] 198
Agent Communication (structure and semantics of inter-agent communication) and [PART1] Agent 199
Management specifications. 200
This standard operates at the agent-communication level and does not define any mappings to 201
specific software architectures such as Java, CORBA or DCOM. Such mappings are considered 202
outside the scope of FIPA 97. 203

This specification enables developers to build: 204

 wrappers for software services which are to be utilized and/or controlled by a community of 205
agents (so called “public services”); 206

 agents which provide the Agent Resource Broker (ARB) service to allow for registration in a 207
query repository and management of such software services; 208

 agents ready to access such public services. 209

It is also intended to be used in the future by third party developers wishing to implement new 210
software systems ready to be used by FIPA-compliant agents. 211

To keep the applicability of this specification as unrestricted as possible, the approach used is 212
platform independent. 213

2 Normative reference(s) 214

[PART1] FIPA 97, Foundation for Intelligent Physical Agents - Part 1: Agent Management 215
[PART2] FIPA 97, Foundation for Intelligent Physical Agents - Part 2: Agent Communication 216
Language 217

3 Term(s) and definition(s) 218

For the purposes of this specification, the following terms and definitions apply: 219
Action 220
A basic construct which represents some activity which an agent may perform. A special class of 221
actions is the communicative acts. 222

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 2

Agent Communication Language (ACL) 223
A language with precisely defined syntax, semantics and pragmatics that is the basis of 224
communication between independently designed and developed software agents. 225
ARB Agent 226
An agent which provides the Agent Resource Broker (ARB) service. There must be at least one 227
such an agent in each Agent Platform in order to allow the sharing of non-agent services. 228
Communicative Act (CA) 229
A special class of actions that correspond to the basic building blocks of dialogue between agents. 230
A communicative act has a well-defined, declarative meaning independent of the content of any 231
given act. CA's are modelled on speech act theory. Pragmatically, CA's are performed by an agent 232
sending a message to another agent, using the message format described in this specification. 233
Content 234
That part of a communicative act which represents the domain dependent component of the 235
communication. Note that "the content of a message" does not refer to "everything within the 236
message, including the delimiters", as it does in some languages, but rather specifically to the 237
domain specific component. In the ACL semantic model, a content expression may be composed 238
from propositions, actions or IRE's. 239
Conversation 240
An ongoing sequence of communicative acts exchanged between two (or more) agents relating to 241
some ongoing topic of discourse. A conversation may (perhaps implicitly) accumulate context 242
which is used to determine the meaning of later messages in the conversation. 243
Knowledge Querying and Manipulation Language (KQML) 244
A de facto (but widely used) specification of a language for inter-agent communication. In practice, 245
several implementations and variations exist. 246
Message 247
An individual unit of communication between two or more agents. A message corresponds to a 248
communicative act, in the sense that a message encodes the communicative act for reliable 249
transmission between agents. Note that communicative acts can be recursively composed, so 250
while the outermost act is directly encoded by the message, taken as a whole a given message 251
may represent multiple individual communicative acts. 252
Message content 253
See content. 254
Message transport service 255
The message transport service is an abstract service provided by the agent management platform 256
to which the agent is (currently) attached. The message transport service provides for the reliable 257
and timely delivery of messages to their destination agents, and also provides a mapping from 258
agent logical names to physical transport addresses. 259
Ontology 260
An ontology gives meanings to symbols and expressions within a given domain language. In order 261
for a message from one agent to be properly understood by another, the agents must ascribe the 262
same meaning to the constants used in the message. The ontology performs the function of 263
mapping a given constant to some well-understood meaning. For a given domain, the ontology 264
may be an explicit construct or implicitly encoded with the implementation of the agent. 265
Ontology sharing problem 266
The problem of ensuring that two agents who wish to converse do, in fact, share a common 267
ontology for the domain of discourse. Minimally, agents should be able to discover whether or not 268
they share a mutual understanding of the domain constants. Some research work is addressing 269
the problem of dynamically updating agents' ontologies as the need arises. This specification 270
makes no provision for dynamically sharing or updating ontologies. 271
Proposition 272
A statement which can be either true or false. A closed proposition is one which contains no 273
variables, other than those defined within the scope of a quantifier. 274
Protocol 275
A common pattern of conversations used to perform some generally useful task. The protocol is 276
often used to facilitate a simplification of the computational machinery needed to support a given 277

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 3

dialogue task between two agents. Throughout this document, we reserve protocol to refer to 278
dialogue patterns between agents, and networking or communication protocol to refer to 279
underlying transport mechanisms such as TCP/IP. 280
Software System 281
A software entity which is not conformant to the FIPA Agent Management specification. 282
Software Service 283
An instantiation of a connection to a software system. 284
Speech Act Theory 285
A theory of communications which is used as the basis for ACL. Speech act theory is derived from 286
the linguistic analysis of human communication. It is based on the idea that with language the 287
speaker not only makes statements, but also performs actions. A speech act can be put in a 288
stylised form that begins "I hereby request …" or "I hereby declare …". In this form the verb is 289
called the performative, since saying it makes it so. Verbs that cannot be put into this form are not 290
speech acts, for example "I hereby solve this equation" does not actually solve the equation. 291
[Austin 62, Searle 69]. 292
In speech act theory, communicative acts are decomposed into locutionary, illocutionary and 293
perlocutionary acts. Locutionary acts refers to the formulation of an utterance, illocutionary refers 294
to a categorisation of the utterance from the speakers perspective (e.g. question, command, query, 295
etc), and perlocutionary refers to the other intended effects on the hearer. In the case of the ACL, 296
the perlocutionary effect refers to the updating of the agent's mental attitudes. 297
TCP/IP 298
A networking protocol used to establish connections and transmit data between hosts on the 299
Internet. 300
Wrapper Agent 301
An agent which provides the FIPA-WRAPPER service to an agent domain. 302

4 Symbols (and abbreviated terms) 303

ACC: Agent Communication Channel 304

ACL: Agent Communication Language 305

API: Application Programming Interface 306

ARB: Agent Resource Broker 307

CA: Communicative Act 308

CORBA: Common Object Request Broker Architecture 309

DB: Database 310

DCOM: Distributed COM 311

DF: Directory Facilitator 312

FIPA: Foundation for Intelligent Physical Agents 313

HTTP: Hypertext Transfer Protocol 314

IDL: Interface Definition Language 315

IIOP: Internet Inter-ORB Protocol 316

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 4

OMG: Object Management Group 317

ORB: Object Request Broker 318

RMI: Remote Method Invocation, an inter-process communication method embodied in the 319
Java programming language. 320

SL: Semantic Language 321

SMTP: Simple Mail Transfer Protocol 322

SQL: Structured Query Language 323

Sw: Software System 324

TCP / IP: Transmission Control Protocol / Internet Protocol 325

326

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 5

 326

5 Overview of Agent Software Integration 327

In most significant applications, agents may have a need to obtain a service by other entities in the 328
system. Sometimes, such services could be provided by other agents. However, there are and in 329
the future there will continue to be a wealth of non-agent software systems which provide useful 330
services. If agents are to be truly useful they must be able to interface with and control existing 331
software system such as databases, web-browsers, set-top boxes, speech synthesis programs 332
and so forth. 333

This specification defines how software resources can be described, shared and dynamically 334
controlled in an agent community. Software systems are characterised by software descriptions 335
which define the nature of the software system and how to connect to it. The rationale behind this 336
specification is to allow agents to openly share and trade software resources with each other. 337
Allowing agents to communicate about software resources, means agents can inform each other 338
about the existence of new software resources and thereby facilitate the dynamic inclusion and 339
management of new software systems. This provides agents with a method by which they can 340
dynamically acquire new capabilities. 341

FIPA 97 concerns itself with how agents can connect to and control external software systems, 342
that is systems which are external to and independent of an agents execution context. By way of 343
contrast, internal attachment to software, where the software is included in an agents execution 344
context is not considered in FIPA 97 as it would require assumptions to be made about the internal 345
implementation of agents. 346

Software systems come in all shapes and sizes. Many different types of interfaces are possible 347
each with their own particular networking protocol, strengths and weaknesses. Furthermore, there 348
are a number of emerging distribution technologies such as CORBA, DCOM and Java / Java-RMI 349
which are creating (competing) standards for the integration of software systems and resources. 350
To simplify this situation and to provide the freedom to agent-programmers, this specification does 351
not mandate the use of any particular API or distribution technology, rather it treats software 352
integration at the agent-communication level. That is in terms of the types and contents of 353
messages exchanged between agents. To support this, two new agent roles have been identified: 354

Client
Agent

Software
system

ARB

WRAPPER

Outside scope
of FIPA’97

query

invoke

 355

Figure 1 — General Agent Software Integration Scenario 356
a) Agent Resource Broker (ARB) - an ARB agent brokers a set of software descriptions to 357

interested agents. Clients query it about what software services are available. 358

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 6

b) WRAPPER Agent - this agent allows an agent to connect to a software system uniquely 359
identified by a software description. Client Agents can relay commands to the WRAPPER 360
agent and have them invoked on the underlying software system. The role provided by the 361
WRAPPER agent provides a single generic way for agents to interact with software systems. 362

Mapping To Technology

AGENT USING THE SOFTWARE SERVICE

WRAPPER AGENT

ACL messages

SOFTWARE SERVICES

CGI APRIL CMIP or ActiveX Java . . . Sockets ORB Trader

HTTP TCP/IP SNMP DCOM RMI TCP/IP CORBA/IIOP

 SNMP/CMIP Java Component Legacy CORBA DSM-
MIBs Server Server Server

Web Server

 363

Figure 2 — Layered Model for a Wrapper 364
In this document we refer to ARB and WRAPPER agents. However, these are defined as agent 365
capabilities rather than explicit agent types. Each capability is defined by an ontology (defining the 366
syntax and semantics of a set of actions and predicates) which are supported by an agent fulfilling 367
the corresponding ARB or WRAPPER role. 368
NOTE This specification is only concerned with the interactions between agents. How a WRAPPER agent actually connects to 369
and invokes operations on a software system is the responsibility of individual WRAPPER agent developers. WRAPPER agents 370
can be specific in that they only support specific types of software systems, or they may be able to support connections to a 371
number of different software system types. 372

Client
Agent

Wrapper
Agent

Wrapper
Agent

Wrapper
 Agent

Legacy
DB

SQL DB

Web
Server

HTTP

ORB Bus

Dedicated
Mapping

 373

Figure 3 — Example Scenario WRAPPER Agents and Software Systems 374

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 7

Figure 3 shows three examples of possible WRAPPER Agents. The top WRAPPER agent 375
provides a dedicated mapping to a legacy database over, for example say, the TCP/IP protocol. 376
The top WRAPPER agent will set-up a connection to the legacy DB and will translate invocation 377
requests from the client agent into operations on the legacy database. The bottom WRAPPER 378
agent provides a mapping to the application-level HTTP protocol, enabling the client agent to 379
access internet resources from web-servers. Finally, the middle WRAPPER agent provides a 380
mapping to a CORBA standard Object Request Broker (ORB) allowing the client agent to 381
manipulate an SQL database over an ORB bus. This WRAPPER agent could be specialised to 382
accessing just SQL databases using CORBA ORBs or it could be a more general WRAPPER 383
agent which supports dynamic connection to any system which has been registered with the 384
ORB’s Implementation Repository. 385

This specification contains a normative part (section 6) which provides details about how to find 386
and interface with software systems in a manner which is FIPA compliant. 387

6666 388

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 8

Normative Specification 389

This section contains the detailed normative specification of how software systems should be 390
integrated into an agent domain. A reference model is presented which identifies agent roles such 391
as ARB and WRAPPER. For each role it defines the ACL messages and actions and predicates 392
(service ontology) which are understood by agents who fulfill these roles in an agent domain. 393
6.1 Reference Model 394

Key:

Communication

Manages

boundary

Agent (ACL) interface

Non-Agent interface

ACC

Agent 1
Agent-i

(ARB)

Sw3

Sw1 Sw2

Agent-j
(WRAPPER)

Agent-k

(Using Sw1)

Not-FIPA

FIPA

DF

Agent 2

Sw4

 395

Figure 4 — Reference Model 396
Figure 4 extends the conceptual view of an agent domain, as defined in [PART1 Agent 397
Management], to include two new agent roles (ARB and WRAPPER). The entities of this reference 398
model are: 399

 Directory Facilitator (DF) - this is a specialized agent which provides a “yellow pages” directory 400
service. Agents advertise their services to an agent domain by registering service-descriptions 401
with the DF. 402

 Agent Communication Channel (ACC) this provides a message-routing function for inter-agent 403
communication. Messages are defined according to the Agent Communication Language 404
(ACL) as defined by [PART2 Agent Communication]. It can be accessed by non-agent entities 405
in order to route messages to agents but non-agent entities cannot be the recipients of 406
messages routed via the ACC. 407

 Software (Sw) - these are non-agent software entities which are controllable through some 408
transport medium, encoding scheme, message format and interaction scheme (communication 409
or networking protocol). Such interfaces are application dependent and are outside the scope 410
of FIPA standardisation. 411

 ARB Agent (Agent-i in the figure) - this is an agent which supports the ARB capability as 412
defined in this specification. An ARB agent brokers a set of software descriptions to interested 413

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 9

client agents. An ARB advertises this service to the agent domain by registering with the DF. 414
See section 0 for further details. 415

Software services are described by textual software descriptions which list the properties of the 416
software service. Part of the software description will describe where the software is located and 417
how to interface with it (e.g. networking protocols, encoding types supported). An agent providing 418
the ARB interface supports the FIPA-ARB ontology with commands and predicates for registering 419
and searching for software services. 420

 WRAPPER Agent (Agent-j in the figure) - this is an agent which can dynamically interface with 421
a software system uniquely described by a software description. The WRAPPER agent will 422
allow client agents to invoke commands on the underlying software system, translating the 423
commands contained in ACL messages into operations on the underlying software system. 424
WRAPPER agents may be able to support multiple connections to software systems 425
simultaneously. 426
NOTE A WRAPPER agent which supports the full WRAPPER ontology is considered to provide more than a simple bridging 427
function to an external software system. Such an agent implicitly provides a management functionality. 428

A WRAPPER agent supports the FIPA-WRAPPER ontology with commands and predicates for 429
initialising and issuing requests to software systems. 430

How a WRAPPER agent is implemented and what interface exists between the WRAPPER agent 431
and the underlying software system which provides the software service is a matter for WRAPPER 432
developers and third-party tool support vendors. It is outside the scope of this specification. 433

A key point to remember is that WRAPPER agents have the ability to dynamically manage new 434
software devices. This is the conceptual difference between a WRAPPER agent and an agent 435
which upgrades a software service to being an agent-level service. This difference will of course be 436
reflected in the Directory Facilitator (DF). To illustrate the point consider two agents: The first agent 437
has the capability to send and receive email and accordingly it will advertise this service in its DF 438
entry. The second agent has the capability of connecting to an email service, it is a WRAPPER 439
agent and will accept a description of the software service required (in this case the location of the 440
mailhost and the networking protocol to use e.g. POP-3). The first agent will allow a client to send 441
and receive email; it has a static connection to a given email server. The second agent will allow 442
an agent to dynamically connect to a remote email service identified by a software description. See 443
section 0 for further details. 444

 Client Agents (Agent-k in the figure) - this is an agent which wishes to use the services 445
provided by a software system, for example Sw1. It will query the DF in order to find out if an 446
agent exists which provides an ARB service in the agent domain. Next it will query the ARB 447
agent to see if there is a software system (identified by a software description) which meets its 448
requirements (Sw1). If Agent-k cannot interface directly with the software system (Sw1) 449
identified by the software description returned by the ARB, it must obtain the services of an 450
agent who can (a WRAPPER agent). Agent-k queries the DF to find out if there is an agent 451
which supports the WRAPPER capability for the specific software system which the software 452
description identifies. In this example, the DF returns Agent-j in response to the query. Agent-k 453
then contacts Agent-j (the WRAPPER agent) to initiate control of SW1. The WRAPPER agent 454
(Agent-j) will invoke operations on the underlying software system in response to requests sent 455
to it by Agent-k. 456

 Agents that can directly interface to software systems (Agent-2 in the figure) in the reference 457
model. This Agent has the ability to directly interface to a software system (Sw3 in the figure) 458
and thus does not need to avail of the services of a WRAPPER agent. Such capabilities are 459

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 10

outside the scope of this specification. It should be noted, that Agent-2 could have obtained the 460
address of Sw3 from the ARB agent. 461

 Agents that can embed private software within their execution context (Agent-1 in the figure). 462
This is outside the scope of this specification. 463

Summary of steps necessary to support the reference model 464

a) Agent-i registers with the DF. It advertises the fact that it provides an ARB service by providing 465
a service-description with FIPA-ARB listed in the service-type. See [PART1] and section 0 in 466
this document for further information about registering services with the DF. 467

b) Agent-j registers with the DF. It advertises the fact that it provides a WRAPPER service by 468
providing a service description with FIPA-WRAPPER listed in the service-type. See [PART1] 469
and section 0 of this document for further information. 470

c) Agent-k queries the DF for an agent which provides an ARB service. The DF returns the name 471
of Agent-i as satisfying the query. 472

d) Agent-k queries the Agent-i for a software system which matches some specific requirements, 473
for example a Group3 fax-server. Agent-i returns a software description which uniquely 474
identifies a specific software service. 475

e) Agent-k queries the DF for an agent which can provide a WRAPPER service to a Group3 fax-476
server. The DF returns the name of Agent-j as satsifying the query. 477

f) Agent-k requests that Agent-j initialise a connection to the Group3 fax server identified by the 478
service description (from step 4). 479

g) Agent-k requests that Agent-j invoke operations on the Group3 fax server. 480
h) Agent-k requests that Agent-j close the connection to the Group3 fax server. 481
6.26.26.26.2 482

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 11

Agent Resource Broker service. 483

The Agent Resource Broker (ARB) is a special service that can be provided by an agent. Every 484
agent in the domain is allowed to support this service, however it is mandatory that every agent 485
platform which wants to support FIPA-compliant software sharing must have at least one 486
agent that provides this ARB service. This service must be registered with the DF in order to be 487
advertised in the agent domain; [PART1] specifies the registration procedure. Every ARB agent is 488
able to understand the FIPA-ARB ontology as specified in this section. Therefore, in order to find 489
an agent which provides ARB service, agents must query the Directory Facilitator (DF), whose 490
address is by default known by all agents in the domain. [PART1] specifies a search action which 491
is supported by the DF. For illustrative purposes an example query is shown below: 492

Example 1 493

(request494
:sender Agent-k495
:receiver DF496
:content497

(action DF498
(search 499
(:df-description 500
(:agent-services 501
(:service-description502
(:service-type FIPA-ARB)503

 (:service-ontology FIPA-ARB))))504
(:df-depth max 1)505
)) 506

:language SL0507
:ontology fipa-agent-management508
:protocol fipa-request 509

.....) 510

If the request is successful, the Directory Facilitator (DF) responds with an inform CA with the 511
content set to the following form: 512

(result <Action> (<agent-description>*))513

An agent which offers the ARB service wishes to broker a set of software services for direct use by 514
other agents. However, an ARB may not wish to simply hand over a software description is 515
response to a query from an interested agent. It may wish to negotiate over the terms and 516
conditions of use of the software system; request authorisation; or even provide permanent or 517
evaluatory keys for use with the software system. Such negotiation is application-dependent and is 518
not specified here. 519
6.2.1 FIPA-ARB Ontology 520
The keyword FIPA-ARB is reserved in all FIPA compliant implementations of this specific ontology 521
and agent service. 522
In the following the FIPA-ARB Ontology is described by using a frame-like formalism. The list of 523
object types, actions and predicates to be used in this ontology is given. The use of the SL content 524
language is mandatory. The use of this FIPA-ARB ontology is mandatory. The keyword FIPA-ARB 525
is reserved in all the FIPA compliant implementations to denote this specific ontology and agent 526
service. 527

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 12

6.2.1.1 Content type and parameters 528
These tables describe the list of object types that can be used in this ontology and the relative list 529
of parameters. A description of each parameter is given. The label “(M)” identifies mandatory 530
parameters while the label “(O)” optional parameters. 531
6.2.1.1.1 service-description 532

Table 1 — Service Description Attributes 533

Parameter Description Pre-defined constants

:service-name Denotes the service name. It must be unique
within the wrapper scope. (M)

:service-type Identifies the type of service described, (e.g.
DataBase) (M)

FIPA-ARB
FIPA-WRAPPER

:service-ontology Denotes the ontology(ies) the service can
support. Notice that more services can
support the same ontology even if playing
different roles (e.g. producer and consumer).
The played role is then identified by the
service-type.(M)

FIPA-ARB
FIPA-WRAPPER

:fixed-properties Denotes a list of fixed, i.e. static and non-
negotiable, properties of the service. It is
assumed that they are defined with regard to
a commonly held view of the service, i.e.
the service-ontology. The value of this
parameter is a list of keyword-value pairs,
e.g. (:fixed-properties (:cost
1000) (:size 200)). (O)

:negotiable-properties Denotes a list of properties whose value can
be determined dynamically or the ARB
agent may wish to negotiate over. It is
assumed that they are defined with regard to
a commonly held view of the service, i.e.
the service-ontology. The value of this
parameter is a list of keyword, e.g.
(:negotiable-properties
(priority bit-rate waiting-
time)). (O)

:communication-properties Identifies the unique address of the software
system described by this software
descriptions as well as the networking
protocol to be used when interfacing with
the software system. (M)1

(see next table)

The domain-dependent description of the service can be further refined by two types of properties: 534

a) fixed-properties – these describe the fixed (non-negotiable, static) properties of the service. 535
Continuing the movie-database example, fixed properties could be “size of database” or 536
“number of output streams”. It is assumed that fixed properties are defined with regard to the 537
service ontology, a commonly held view of the service (for example, an industry standard). 538

b) negotiable-properties - these describe those properties of the service which can be determined 539
dynamically or those that the ARB agent may wish to negotiate over. For example, “cost of 540

1 It should be noted that an ARB agent may withhold this piece of information in response to a query from a client agent subject to
subsequent successful negotiation.

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 13

movie”, “bit-rate”, etc. Negotiable properties do not have associated values. It is assumed that 541
negotiable properties are defined with regard to the service ontology, a commonly held view of 542
the service (for example, an industry standard). 543

6.2.1.1.2 communication-properties 544
These are the generic service-independent properties which describe how to actually connect to 545
the service. 546
NOTE It is not mandatory to return all the communication properties in response to a query. These could be withheld (for 547
example, the address of the service) by the ARB pending a successful negotiation over the terms and conditions of the service. 548
Communication properties shall be independent of any given communication protocol. They are 549
complete, and provide at least the minimum information required for an agent to successfully 550
connect directly to a software system. 551
NOTE All parameters are mandatory in the registration of the service. 552

Table 2 — communication-property Attributes 553

Parameter Description Pre-defined constants

:net-protocol Denotes the networking protocol. (M) IIOP SMTP HTTP

:address Denotes the address. (M) Address format is associated to
the types of communication
protocol selected.

:message-body-format Denotes the message body format. (M) FIPA-ACL HTML

:message-body-encoding Denotes the encoding type for the message
body. (M)

ISO-2022

 554
6.2.1.2 Actions 555
These tables describe the list of actions that can be requested in this ontology. A description of 556
each action is given including the agent that supports the action itself, the content of the action (i.e. 557
its parameters), the interaction protocol [PART2] and an example. The failure and refuse 558
predicates listed in the tables must be mandatory supported by every Wrapper agent. 559
6.2.1.2.1 register-software 560
Supported by ARB

Description This action instructs the ARB to register the description of a software service and
its associated properties

Parameter service-description

FIPA Protocol fipa-request

Example (request

 :sender Agent-k

 :receiver ARB_1

 :content

 (action ARB_1

 (register-software

 (:service-description

 (:service-name web-server-1075)

 (:service-type web-server)

 (:service-ontology web-server)

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 14

 (:communication-properties

 (:net-protocol HTTP)

 (:address www.fipa.org)

 (:message-body-format HTML)

 (:message-body-encoding Latin-1)))

))

 :language SL

 :protocol fipa-request

.....)

This example shows an agent requesting to register a software description of a web-server
with an ARB

Failure / Refuse
Predicates

(not-valid-description)

(service-name-in-use)

(unauthorised-request)
 561
6.2.1.2.2 de-register-software 562
Supported by ARB

Description This action instructs the ARB to de-register the description of a software service.

Parameter service-name

FIPA Protocol fipa-request

Example (request

 :sender Agent-k

 :receiver ARB_1

 :content

 (action ARB_1

 (de-register-software

 (:service-name web-server-1075)))

 :language SL

 :protocol fipa-request

.....)

This example shows an agent requesting to de-register a web-server identified by the
name web-server-1075

Failure / Refuse
Predicates

(not-valid-description)

(not-valid-service-name)

(unauthorised-request)
 563
6.2.1.2.3 modify-description 564
Supported by ARB

Description This action instructs the ARB to modify the description of a software service.

Parameter service-name, service-description (including a list of service parameters to
change)

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 15

FIPA Protocol fipa-request

Example (request

 :sender Agent-k

 :receiver an-ARB

 :content

 (action an-ARB

 (modify-wrapper

 (:service-name web-server-1075)

 (:service-description

 (:communication-properties

 (:address new-www.fipa.org)))))

 :language SL

 :protocol fipa-request

.....)

An-agent requests to change the address of the web-server

Failure / Refuse
Predicates

(not-valid-description)

(not-valid-service-name)

(unauthorised-request)
 565
6.2.1.3 Predicates 566
The ARB ontology also supports a number of predicates. Client agents can make use of this 567
service using the query-ref, query-if, subscribe, request-when and request-whenever 568
communicative acts. This specification mandates only that an agent who wishes to support the 569
ARB ontology supports the request, query-if and query-ref communicative acts. 570
6.2.1.3.1 Registered Predicate 571
When an ARB agent performs a register-software action it asserts a predicate: 572

(registered <service description>).573
This predicate can be subsequently be queried through the use of query-ref and query-if 574
communicative acts. 575

Example 2 576

(query-ref577
:sender Agent-k578
:receiver ARB_1579
:content580

(iota ?NAME581
(registered582
(:service-description583

(:service-name ?NAME)584
(:service-ontology EMAIL)))) 585

 :language SL586
:ontology FIPA-ARB587
:protocol FIPA-QUERY588

.....)589
 590
This example illustrates the use of the query-ref communicative act which Agent-k uses to find the 591
name of an Email software service. 592

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 16

6.2.1.3.2 Member Predicate 593
This specification introduces the use of the member predicate. This predicate can be used to bind 594
sets of expressions to iota supplied variables. The syntax of a member predicate is: 595

(member <element> <set>)596
Which is true when <element> is a member of the set <set> (i.e. the member predicate is the 597
symbol from set theory). The following example illustrates its use. Here Agent-k is querying the 598
ARB_1 agent to return the set of all Email software service names. 599

600

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 17

Example 3 600

(query-ref 601
 :sender Agent-k602

:receiver ARB_1603
:content604
(iota ?SET-OF-NAMES605
(forall ?NAME606
(equiv (member ?NAME ?SET-OF-NAMES)607

(registered608
(:service-description609
(:service-name ?NAME)610
(:service-ontology EMAIL))))))611

 :language SL612
:ontology FIPA-ARB613

.....)614
6.2.2 Querying the ARB 615
Every ARB can be queried using the query-if and query-ref communicative acts for the FIPA-ARB 616
ontology. For example, you can use the query-ref communicative act to query what are the 617
available software systems which satisfy a specific service description.l 618
6.2.3 Registering the ARB service with the DF 619
To advertise its intention to provide an ARB service to the agent domain descriptions, an ARB 620
agent must register with the DF. Specifically it must register a service-description with the service-621
type set to FIPA-ARB and the service-ontology also set to FIPA-ARB [PART1]. The following 622
communicative act shows how service descriptions are registered: 623

Example 4 624

(request625
:sender ARB_1626
:receiver DF627
:content628

(action DF629
(register630
(:df-description631
(:agent-name ARB_1)632

(:agent-services633
(:service-description634

 (:service-type FIPA-ARB)635
 (:service-ontology FIPA-ARB)))))) 636

:language SL637
:protocol fipa-request 638

.....)639
6.2.4 Conformance 640
A FIPA compliant ARB agent must at least: 641
 register the ARB service with the DF with the service-type and the service-ontology set to 642

FIPA-ARB, as described in section 0; 643
 implement the actions described in the FIPA-ARB Ontology according to the behaviour and 644

parameters speficied in section 0; 645
 implement and assert the predicates described in the FIPA-ARB Ontology according to the 646

semantics specified in section 0; 647

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 18

 create and store registration predicates in response to a successful register operation as 648
specified in section 0; 649

 understand the request communicative act to request the execution of one of these FIPA-ARB 650
actions; 651

 understand the query-if and query-ref communicative acts to query its knowledge by using the 652
FIPA-ARB predicate; 653

 implement the fipa-request and fipa-query interaction protocols speficied in [PART2]; 654
 implement the not-understood, agree, refuse, failure, inform communicative acts in order to 655

respond to requests and queries according to the fipa-request and fipa-query interaction 656
protocols. 657

Even if these requirements guarantee FIPA compliance, of course they are not sufficient to 658
guarantee the usefulness of the ARB agent to the agent domain. 659
6.36.36.36.3 660

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 19

Wrapper Service 661

Wrapper services are provided by agents. The Wrapper service allows an agent to (the 662
corresponding actions for the WRAPPER ontology / communicative acts are indicated in italics): 663

 request a dynamic connection to a software system (init <software description>); 664
 invoke operations on the software system (invoke <operation>); 665
 to be informed of the results of operations (inform <result>); 666
 to query the properties of the software system (query-ref and query-if); 667
 set the parameters of a software system (achieve); 668
 subscribe to events of the software system (software-subscribe, software-unsubscribe); 669
 manage the state of the service (store, restore, suspend and resume); 670
 terminate the service (close). 671

An agent can request of an agent which provides a wrapper service to dynamically connect to a 672
software system uniquely identified by a software service description. This specification has 673
defined the ARB service (see section 0) which supports the sharing and brokering of such software 674
descriptions. 675

An agent providing a wrapper service (WRAPPER agent) can be specific to a type of software 676
system (specifically it commits to a given software system ontology). In addition, a WRAPPER can 677
be specific about the types of connection / communication protocols it can support when 678
interfacing with a software system, for example HTTP, SMTP etc. This allows client agents who 679
wish to avail of the services of a WRAPPER agent to discriminate between WRAPPER agents on 680
the basis of both software systems supported and the types of connections supported. Section 681
6.3.2provides an example of how to query the DF to find an appropriate WRAPPER agent. Section 682
0 provides an example of how to WRAPPER agent might register itself. Both examples are based 683
on [PART1] specifications. 684

WRAPPER agents may be able to support multiple software types and multiple service instances 685
simultaneously. In order to allow a WRAPPER agents to distinguish between concurrent services, 686
WRAPPER agents will return a service-instance-id to the client agent on the successful completion 687
of an init action. Most of the actions supported by the FIPA-WRAPPER ontology require the 688
inclusion of this service-instance-id. 689

 690
6.3.1 FIPA-WRAPPER Ontology 691
The keyword FIPA-WRAPPER is reserved in all FIPA compliant implementations of this specific 692
ontology and agent service. 693
A WRAPPER agent has freedom on how it chooses to “wrap” a software system. The most basic 694
integration scenario would model a software system simply as a collection of operations which can 695
be performed on the software system. 696
A more sophisticated WRAPPER agent can divide the operations into three general categories. 697
Specific actions and predicates have been included in the WRAPPER ontology to reflect and 698
support this distinction. That is to provide WRAPPER agents with the necessary vocabulary to 699
support such distinctions should WRAPPER agent-designers wish to support them. The three 700
categories are: 701
a) Event Notification: the software system asynchronously notifies every agent subscribed to an 702

event when that specific event occurs. The actions software-subscribe and software-703

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 20

unsubscribe actions support this activity. The subscribed predicate supports the querying of 704
what events an agent is subscribed to. 705

b) Sensing Functions: the agent can require to the wrapper to be informed of the result of a 706
function call (e.g. number of e-mails in the Inbox) which does not change the state of the 707
environment and of the software system itself. The query-ref and query-if communicative 708
actions and the parameter predicate support this activity. 709

c) Effecting Actions: the agent can require the wrapper to perform an action (e.g. send this e-mail 710
to Kim). The invoke action supports this function for domain-dependent operatons. The 711
achieve action provides a generic way to set the parameters of a software service. 712

Such a categorisation allows the interfaces to different software systems to be treated in a generic 713
component-based manner. There is a generic method for discovering what event types, 714
parameters and operations are supported using the query-ref and query-if communicative acts in 715
conjunction with the predicates supported by the FIPA-WRAPPER ontology. The actions of the 716
FIPA-WRAPPER ontology provide a single generic way to (un)subscribe to events, modify 717
parameters and invoke operations. 718

As mentioned already, a WRAPPER agent does not have to provide such a component-based 719
interface to a software system. 720

 721
6.3.1.1 Content type and parameters 722
These tables describe the list of object types that can be used in this ontology and the 723
corresponding list of parameters. A description of each parameter is given. The label “(M)” 724
identifies mandatory parameters while the label “(O)” optional parameters. The “Pre-defined 725
constants“ are mandatory. 726
6.3.1.1.1 service-description 727

Table 3 — Service Description Attributes 728

Parameter Description Pre-defined constants

:service-name Denotes the service name. It must be unique
within the wrapper scope. (M)

:service-type Identifies the type of service described, (e.g.
DataBase) (M)

FIPA-ARB
FIPA-WRAPPER

:service-ontology Denotes the ontologies the service can
support. Notice that several services can
support the same ontology even if playing
different roles (e.g. producer and consumer).
The role played is then identified by the
service-type.(M)

FIPA-ARB
FIPA-WRAPPER

:fixed-properties Denotes a list of fixed, i.e. static and non-
negotiable, properties of the service. It is
assumed that they are defined with regard to
a commonly held view of the service, i.e.
the service-ontology. The value of this
parameter is a list of keyword-value pairs,
e.g. (:fixed-properties (:cost
1000) (:size 200)). (O)

:negotiable-properties Denotes a list of properties whose value can
be determined dynamically or the ARB

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 21

agent may wish to negotiate over. It is
assumed that they are defined with regard to
a commonly held view of the service, i.e.
the service-ontology. The value of this
parameter is a list of keyword, e.g.
(:negotiable-properties
(priority bit-rate waiting-
time)). (O)

:communication-properties Identifies the unique address of the software
system described by this software
descriptions as well as the communication
protocol to be used when interfacing with
the software system. (M)2

(see next table)

The domain-dependent description of the service can be further refined by two types of properties: 729

a) fixed-properties – these describe the fixed (non-negotiable, static) properties of the service. 730
Continuing the movie-database example, fixed properties could be “size of database” or 731
“number of output streams”. It is assumed that fixed properties are defined with regard to the 732
service ontology, a commonly held view of the service (for example, an industry standard). 733

b) negotiable-properties - these describe those properties of the service which can be determined 734
dynamically or those that the WRAPPER agent may wish to negotiate over. For example, “cost 735
of movie”, “bit-rate”, etc. Negotiable properties do not have associated values. It is assumed 736
that negotiable properties are defined with regard to the service ontology, a commonly held 737
view of the service (for example, an industry standard). 738

6.3.1.1.2 communication-properties 739
These are the generic service-independent properties which describe how to actually connect to 740
the service. 741
Communication properties shall be independent of any given communication protocol. They are 742
complete, and provide at least the minimum information required for the WRAPPER agent to 743
successfully connect directly to a software system. The “Pre-defined constants“ are mandatory. 744
NOTE All parameters are mandatory in the registration of the service. 745

Table 4 — communication-property Attributes 746

Parameter Description Pre-defined constants

:net-protocol Denotes the networking protocol. (M) IIOP SMTP HTTP

:address Denotes the address. (M) Address format is associated
to the types of networking
protocol selected.

:message-body-format Denotes the message body format. (M) FIPA-ACL HTML

:message-body-encoding Denotes the encoding type for the message
body. (M)

ISO-2022

 747
6.3.1.2 Actions 748
In all the following action definitions, the message parameters :language and :ontology are 749
assumed to be mandatory set to SL and FIPA-WRAPPER respectively. The failure and refuse 750
predicates listed in the tables must be mandatory supported by every Wrapper agent. 751

2 It should be noted that an ARB agent may withhold this piece of information in response to a query from a client agent subject to
subsequent successful negotiation.

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 22

6.3.1.2.1 init 752
Supported by WRAPPER

Description This action allows an agent to properly initialize the underlying software. The
parameter service-description allows the wrapper-agent to distinguish
between several wrapped services. The parameter content-expression
could be used to pass parameters to the software for the initialization. The result
of the init operation is that a service-instance-id is returned to the agent
via an inform CA.

If successful, according to the FIPA-Request Protocol [PART2], the WRAPPER
agent will respond with an inform CA with the content set to :

(result <Action> (:service-instance-id <identifier>))

Parameter service-description, <content-expression> (optional)

FIPA Protocol fipa-request

Example (request

 :sender Agent-k

 :receiver A-WRAPPER-agent

 :content

 (action A-WRAPPER-agent

 (init

 (:service-description

 (:service-name web-server-1075)

 (:service-type web-server)

 (:service-ontology web-server)

 (:communication-properties

 (:net-protocol HTTP)

 (:address www.fipa.org)

 (:message-body-format HTML)

 (:message-body-encoding Latin-1)))

 (:encrypted-password X3432S$%)))

.....)

Failure / Refuse
Predicates

(not-valid-service-description)

(unauthorised)

(maximum-number-of-instances-exceeded)

(service-in-use)

(service-unreachable)
 753
6.3.1.2.2 close 754
Supported by WRAPPER

Description This action is used to close the connection to a software instance. The
content- expression could be used to pass some parameters to the
software. The service-instance-id (returned by a successful init) must be
included to identify the instance of the service to be closed.

Parameter service-instance-id, <content-expression> (optional)

FIPA Protocol fipa-request

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 23

Example (request

 :sender Agent-k

 :receiver A-WRAPPER-agent

 :content

 (action A-WRAPPER-agent

 (close

 (:service-instance-id web-server-001)

 (:encrypted-password X3432S$%)))

 :protocol fipa-request

.....)

Failure / Refuse
Predicates

(not-valid-service-instance-id)

(unauthorised)

 755
6.3.1.2.3 store 756
Supported by WRAPPER

Description This action is a request from the agent to the wrapper to store the current state of
the software instance. The result of the store operation is that a state-id is
returned to the agent. The state-id allows a subsequent restore procedure to
identify the state to go back.

If successful, according to the FIPA-Request Protocol [PART2], the WRAPPER
agent will respond with an inform CA with the content set to:

(result <Action> (:state-id <identifier>))

Parameter service-instance-id

FIPA Protocol fipa-request

Example (request

 :sender Agent-k

 :receiver A-WRAPPER-agent

 :content

 (action A-WRAPPER-agent

 (store

 (:service-instance-id web-server-001)))

 :protocol fipa-request

.....)

Failure / Refuse
Predicates

(not-valid-service-instance-id)

(unauthorised)

(not-enough-resources)

(exceeded <resource>)

(not-storable)
 757
6.3.1.2.4 restore 758
Supported by WRAPPER

Description This action allows an agent to restore a previously stored state of the software
instance.

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 24

If successful, according to the FIPA-Request Protocol [PART2], the WRAPPER
agent will respond with an inform CA with the content :

(done <Action>)

Parameter service-instance-id, state-id

FIPA Protocol fipa-request

Example (request

 :sender An-agent

 :receiver A-WRAPPER-agent

 :content

 (action A-WRAPPER-agent

 (restore

 (:service-instance-id web-server-001)

 (:state-id web-server-stored-001)))

 :protocol fipa-request

.....)

Failure / Refuse
Predicates

(not-valid-service-instance-id)

(not-valid-state-id)

(unauthorised)

(not-enough-resources)

(service-suspended)

(exceeded <resource>)
 759
6.3.1.2.5 software-subscribe 760
Supported by WRAPPER

Description It must be used to subscribe to an event. The agent will be asynchronously
notified by the wrapper every time this event occurs. If the request is successful,
then it causes the equivalent of a predicate (subscribed <service-
instance-id> <event-name>) to be asserted within the WRAPPER agent.
This allows queries on the list of subscribed / unsubscribed events to be
performed (using query-ref and query-if).

If successful, according to the FIPA-Request Protocol [PART2], the WRAPPER
agent will respond with an inform CA with the content :

(done <Action>)

Parameter service-instance-id, event-name

FIPA Protocol fipa-request

Example (request

 :sender Agent-k

 :receiver A-WRAPPER-agent

 :envelope (service-instance-id web-server-001)

 :content

 (action A-WRAPPER-agent

 (software-subscribe

 (:service-instance-id web-server-001)

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 25

 (:event-name NEW-CONTENT-EVENT)))

 :protocol fipa-request

.....)

An-Agent requests of A-WRAPPER-agent that it subscribes to an NEW-CONTENT-
EVENT.

Failure / Refuse
Predicates

(not-valid-service-instance-id)

(unauthorised)

(exceeded <resource>)

(service-suspended)

(unknown-event-name)
 761
6.3.1.2.6 software-unsubscribe 762
Supported by WRAPPER

Description This action must be used to unsubscribe to an event. If the request is successful
then the predicate (subscribed <service-instance-id> <event-
name>) is retracted within WRAPPER agents.

If successful, according to the FIPA-Request Protocol [PART2], the WRAPPER
agent will respond with an inform CA with the content :

(done <Action>)

Parameter service-instance-id, event-name

FIPA Protocol fipa-request

Example (request

 :sender Agent-k

 :receiver A-WRAPPER-agent

 :content

 (action A-WRAPPER-agent

 (software-unsubscribe

 (:service-instance-id web-server-001)

 (:event-name NEW-CONTENT-EVENT)))

 :protocol fipa-request

.....)

Failure / Refuse
Predicates

(not-valid-service-instance-id)

(unauthorised)

(exceeded <resource>)

(unknown-event-name)

(service-suspended)
 763
6.3.1.2.7 suspend 764
Supported by WRAPPER

Description This action instructs the WRAPPER agent to suspend the software service
identified by the service-instance-id.

If successful, according to the FIPA-Request Protocol [PART2], the WRAPPER
agent will respond with an inform CA with the content :

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 26

(done <Action>)

Parameter service-instance-id

FIPA Protocol fipa-request

Example (request

 :sender Agent-k

 :receiver A-WRAPPER-Agent

 :content

 (action A-WRAPPER-Agent

 (suspend

 (:service-instance-id web-server-001)))

 :protocol fipa-request

.....)

Failure / Refuse
Predicates

(not-valid-service-instance-id)

(unauthorised)

(not-enough-resources)

(exceeded <resource>)

(service-already-suspended)

(not-suspendable)

 765
6.3.1.2.8 resume 766
Supported by WRAPPER

Description The action instructs the WRAPPER agent to resume a previously stored service.

If successful, according to the FIPA-Request Protocol [PART2], the WRAPPER
agent will respond with an inform CA with the content :

(done <Action>)

Parameter service-instance-id

FIPA Protocol fipa-request

Example (request

 :sender Agent-k

 :receiver A-WRAPPER-agent

 :content

 (action A-WRAPPER-agent

 (resume

 (:service-instance-id web-server-001)))

 :protocol fipa-request

.....)

Failure / Refuse
Predicates

(not-valid-service-instance-id)

(unauthorised)

(not-enough-resources)

(exceeded <resource>)

(service-not-suspended)

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 27

(not-resumable)
 767
6.3.1.2.9 achieve 768
Supported by WRAPPER

Description This action instructs the WRAPPER agent to attempt to make the associated
predicate become true for the WRAPPER agent.

If successful, according to the FIPA-Request Protocol [PART2], the WRAPPER
agent responds with an inform CA with the content set to:

(result <Action> <Domain Dependent Result>)

Parameter <predicate>

FIPA Protocol fipa-request

Example (request

 :sender Agent-k

 :receiver A-WRAPPER-agent

 :content

 (action A-WRAPPER-agent

 (achieve

 (parameter web-server-001

 EmptyTrashFolder True)))

 :protocol fipa-request

.....)

Failure / Refuse
Predicates

(not-valid-service-instance-id)

(not-valid-predicate)

(unauthorised)

(service-suspended)

(exceeded <resource>)

 769
6.3.1.2.10 invoke 770
Supported by WRAPPER

Description This action instructs the WRAPPER agent to invoke an operation on a software
system identified by service-instance-id

Parameter service-instance-id, <functional-expression>

FIPA Protocol fipa-request

Example (request

 :sender Agent-k

 :receiver A-WRAPPER-agent

 :content

 (action A-WRAPPER-agent

 (invoke

 (:service-instance-id web-server-001)

 (get “welcome.html”)))

 :protocol fipa-request

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 28

.....)

Failure / Refuse
Predicates

(not-valid-service-instance-id)

(not-valid-operation)

(unauthorised)

(service-suspended)

(exceeded <resource>)
 771
6.3.1.3 Predicates 772
The WRAPPER ontology also supports a number of predicates. Client agents can make use of this 773
service using the query-ref, query-if, subscribe, request-when and request-whenever 774
communicative acts. This specification mandates only that an agent who wishes to support the 775
WRAPPER ontology supports the request, query-if and query-ref communicative acts. 776
6.3.1.3.1 Member Predicate 777
The member predicate of section 0 is defined also for this ontology. 778
6.3.1.3.2 Parameter Predicate 779
When an WRAPPER agent initialises the connection to a software service, following a request to 780
init from a client agent, a parameter predicate for each of the set of available parameters of the 781
software system is asserted in the WRAPPER agent. The syntax of a parameter predicate is: 782

(parameter <service-instance-id> <parameter name> <value>)783
This means that it is true that the value of the parameter <parameter name> of the software 784
system identified by the identifier <service-instance-id> is <value>. This parameter predicate can 785
be used as the subject of a query-ref and query-if communicative act in order to determine the 786
values of parameters or indeed what parameters are available (in conjunction with the member 787
predicate). 788
Furthermore, parameter values can be set using the achieve action (see section 0). 789
6.3.1.3.3 Subscribed Predicate 790
When a connection to a software system is initialized, for each event type supported by the 791
software system, this predicate expression is asserted in the WRAPPER agent: 792

(not (subscribed <service-instance-id> <event-name>))793
That is the WRAPPER assumes that the client agent is not subscribed to any events. 794
The predicate 795

(subscribed <service-instance-id> <event-name>)796
is true when the WRAPPER has (through whatever proprietary means the software system 797
requires) subscribed to the event service called <event name> for the software system identified 798
by the <service-instance-id>. 799
NOTE Some software systems will not support event services in which case no subscribed predicates are asserted by the 800
WRAPPER agent. 801
6.3.1.3.4 Operation Predicate 802
When a WRAPPER initiates a service, for each operation supported by the software system it 803
asserts an operation predicate. This predicate has the following syntax: 804

(operation <service-instance-id> <operation name> <argument type>*)805
This predicate is true when the operation <operation name> with arguments of <argument type>* 806
is invokable on the software system identified by the identifier <service-instance-id>. The types of 807
arguments <argument type> are only guaranteed to have significance within the ontology of the 808
software service. 809
NOTE A WRAPPER agent is free to retract these predicates if the operation subsequently becomes unavailable. It is not 810
mandatory that all WRAPPER support this functionality. 811
6.3.2 Querying the WRAPPER 812
Every WRAPPER can be queried using the query-if and query-ref communicative acts for the 813
FIPA-WRAPPER ontology. For example, you can use the query-ref communicative act to query 814
what are the available events, operations and parameters of a instantiated software service. 815

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 29

6.3.3 Registering the WRAPPER service with the DF 816
In order for an agent to advertise its willingness to provide a wrapper service to an agent domain, it 817
must register with a DF [PART1]. Again in order to allow interoperability, this section specifies a 818
number of constants which universally identify the software wrapping service. 819
 the service-type must be declared to be “FIPA-WRAPPER”, 820
 the service-ontology must include “FIPA-WRAPPER”, which identifies the set of actions that 821

can be requested to a wrapper agent. 822
 the fixed-properties list must include a property: 823

(:systems-supported <service-description>+)824
This property indicates what types of software systems that the WRAPPER agent can support 825
connections to. The service description must name at least: 826
a) the service-ontology of the software service and 827
b) the communication properties which describe that what sort of connections the WRAPPER can support. 828

Example 5 829

(request 830
 :sender A-WRAPPER-agent 831
 :receiver DF 832
 :language SL0 833
 :protocol fipa-request 834
 :content 835
 (action DF 836

 (register 837
 (:df-description 838
 (:agent-name A-WRAPPER-agent) 839
 (:agent-services 840
 (:service-description 841
 (:service-name Web-Wrapper-service) 842
 (:service-type FIPA-WRAPPER) 843
 (:service-ontology FIPA-WRAPPER) 844
 (:fixed-properties 845
 (:systems-supported 846
 (:service-description 847
 (:service-ontology web-server) 848
 (:communication-properties 849
 (:net-protocol HTTP) 850
 (:message-body-format HTML) 851
 (:message-body-encoding Latin-1)) 852
))))))))) 853
....) 854
 855
6.3.4 Conformance 856
A FIPA compliant WRAPPER agent must at least: 857
 register the WRAPPER service with the DF with the service-type and the service-ontology set 858

to FIPA-WRAPPER, as described in section 0; 859
 implement the actions described in the FIPA-WRAPPER Ontology according to the behaviour 860

and parameters speficied in section 0; 861
 implement and assert the predicates described in the FIPA-WRAPPER Ontology according to 862

the semantics specified in section 0; 863
 understand the request communicative act to request the execution of one of these FIPA-864

WRAPPER actions; 865

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 30

 understand the query-if and query-ref communicative acts to query its asserted predicates by 866
using the FIPA-WRAPPER predicates; 867

 implement the fipa-request and fipa-query interaction protocols speficied in [PART2]; 868
 implement the not-understood; agree, refuse, failure, inform communicative acts in order to 869

respond to requests and queries according to the fipa-request and fipa-query interaction 870
protocols. 871

872

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 31

Annex A 872
(normative) 873

 874
EBNF Grammar for FIPA-ARB Ontology 875

The following grammar, expressed in BNF, defines the FIPA-ARB as a valid subset of the SL language. 876
This specification is not complete and the reader is directed to [PART2] Agent Communication specification 877
for further information. When communicating with agents supporting the FIPA-ARB ontology the language 878
parameter should be set to SL or SL2. This grammar merely defines what are the valid sentences in the 879
FIPA-ARB ontology in the wider context of the SL language. 880

 881
ARBFunctionalTerm = SLFunctionalTerm 882

 | “(“ “register-software” service-description “)” 883
 | “(“ “de-register-software” service-name “)” 884

 | “(“ “modify-description” service-name service-885
description “)“ 886
 | “(“ “registered” service-description “)” 887
 | “(“ “member” SLxTerm SlxTerm “)” . 888
 889
 890
ARBTerm = SLTerm 891
 | service-description 892
 | service-description-item 893
 | service-name 894
 | communication-properties 895
 | communication-properties-item . 896
 897
 898
 899
service-description = “(“ “:service-description” service-description-900
item+ “)” . 901
 902
service-description-item = service-name 903

 | “(“ “:service-type” Word “)” 904
 | “(“ “:service-ontology” SLTerm “)” 905
 | “(“ “:fixed-properties” SLFunctionalTerm “)” 906
 | “(“ “:negotiable-properties” SLFunctionalTerm “)” 907
 | communication-properties . 908

 909
service-name = “(“ “:service-name” Word “)” . 910
 911
communication-properties = “(“ “:communication-properties” communication-912
properties-item+ “)” . 913
 914
communication-properties-item = “(“ “:net-protocol” SLTerm “)” 915

 | “(“ “:address” SLTerm “)” 916
 | “(“ “:message-body-format” SLTerm “)” 917
 | “(“ “:message-body-encoding” SLTerm “)” . 918

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 32

 919
ARBPropositionSymbol = SLPropositionSymbol 920

 | “not-valid-description” 921
 | “service-name-in-use” 922
 | “unauthorised-request” 923
 | “not-valid-service-name” . 924
 925

 926
927

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 33

Annex B 927
(normative) 928

 929
EBNF Grammar for FIPA-WRAPPER Ontology 930

The following grammar, expressed in BNF, defines the FIPA-WRAPPER as a valid subset of the SL 931
language. This specification is not complete and the reader is directed to [PART2] Agent Communication 932
specification for further information. When communicating with agents supporting the FIPA-WRAPPER 933
ontology the language parameter should be set to SL or SL2. This grammar merely defines what are the 934
valid sentences in the FIPA-WRAPPER ontology in the wider context of the SL language. 935

 936
WrapperFunctionalTerm = SLFunctionalTerm 937

 | “(“ “init” service-description SLTerm “)” 938
 | “(“ “close” service-instance-id SLTerm “)” 939

 | “(“ “store” service-instance-id “)“ 940
 | “(“ “restore” service-instance-id state-id “)” 941
 | “(“ “software-subscribe” service-instance-id event-942
name “)” 943
 | “(“ “software-unsubscribe” service-instance-id 944
event-name “)” 945
 | “(“ “suspend” service-instance-id “)“ 946
 | “(“ “resume” service-instance-id “)“ 947
 | “(“ “achieve” SLTerm “)“ 948
 | “(“ “invoke” service-instance-id SLTerm“)“ 949
 | “(“ “member” SLxTerm SlxTerm “)” 950
 | “(“ “parameter” service-instance-id Word SLConstant 951
“)” 952
 | “(“ “subscribed” service-instance-id Word 953
SLConstant “)” 954
 | “(“ “operation” service-instance-id Word Word+ “)” 955
 | “(“ “exceeded” Word “)” . 956
 957
 958
WrapperTerm = SLTerm 959
 | service-description 960
 | service-description-item 961
 | service-name 962
 | communication-properties 963
 | communication-properties-item 964
 | service-instance-id 965
 | state-id . 966
 967
 968
 969
service-description = “(“ “:service-description” service-description-970
item+ “)” . 971
 972
service-description-item = service-name 973

 | “(“ “:service-type” Word “)” 974

FIPA 97 version 1.0, Part 3 © FIPA (1997)

Page 34

 | “(“ “:service-ontology” SLTerm “)” 975
 | “(“ “:fixed-properties” SLFunctionalTerm “)” 976
 | “(“ “:negotiable-properties” SLFunctionalTerm “)” 977
 | communication-properties . 978

 979
service-name = “(“ “:service-name” Word “)” . 980
 981
event-name = “(“ “:event-name” Word “)” . 982
 983
communication-properties = “(“ “:communication-properties” communication-984
properties-item+ “)” . 985
 986
communication-properties-item = “(“ “:net-protocol” SLTerm “)” 987

 | “(“ “:address” SLTerm “)” 988
 | “(“ “:message-body-format” SLTerm “)” 989
 | “(“ “:message-body-encoding” SLTerm “)” . 990
 991

service-instance-id = “(“ “:service-instance-id” Word “)” . 992
 993

state-id = “(“ “:state-id” Word “)” . 994
 995
 996
 997

WrapperPropositionSymbol = SLPropositionSymbol 998
 | “not-valid-description” 999
 | “unauthorized” 1000
 | “maximum-number-of-instances-exceeded” 1001
 | “service-in-use” 1002
 | “service-unreachable” 1003
 | “not-valid-service-instance-id” 1004
 | “not-enough-resources” 1005
 | “not-valid-state-id” 1006
 | “service-suspended” 1007
 | “unknown-event-name” 1008
 | “service-already-suspended” 1009
 | “service-not-suspended” 1010
 | “not-valid-predicate” 1011
 | “not-valid-operation” 1012

| “not-storable” 1013
| “not-suspendable” 1014
| “not-resumable”. 1015

 1016
 1017
 1018

	1	Scope
	2	Normative reference(s)
	3	Term(s) and definition(s)
	4	Symbols (and abbreviated terms)
	5	Overview of Agent Software Integration
	6	�Normative Specification
	6.1	 Reference Model
	6.2	�Agent Resource Broker service.
	6.2.1	FIPA-ARB Ontology
	6.2.1.1	Content type and parameters
	6.2.1.1.1	service-description
	6.2.1.1.2	communication-properties

	6.2.1.2	Actions
	6.2.1.2.1	register-software

	6.2.1.3	Predicates
	6.2.1.3.2	Member Predicate

	6.2.2	Querying the ARB
	6.2.3	Registering the ARB service with the DF
	6.2.4	Conformance

	6.3	�Wrapper Service
	6.3.1	FIPA-WRAPPER Ontology
	6.3.1.1	Content type and parameters
	6.3.1.1.1	service-description
	6.3.1.1.2	communication-properties

	6.3.1.2	Actions
	6.3.1.2.1	init

	6.3.1.3	Predicates
	6.3.1.3.2	Parameter Predicate
	6.3.1.3.3	Subscribed Predicate
	6.3.1.3.4	Operation Predicate

	6.3.2	Querying the WRAPPER
	6.3.3	Registering the WRAPPER service with the DF
	6.3.4	Conformance

