FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA ACL Message Representation in
Bit-Efficient Encoding Specification

Document title FIPA ACL Message Representation in Bit-Efficient Encoding Specification
Document number |XC00069C Document source FIPA Agent Management
Document status Experimental Date of this status 2000/07/25

Supersedes FIPA00024

Contact fab@fipa.org

Change history

2000/07/25 |Approved for Experimental

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/

Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the
use of this specification.

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies.

The members of FIPA are individually and collectively committed to open competition in the development of agent-based
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership,
governmental body or international organization without restriction. In particular, members are not bound to implement or
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification
can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification
may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their
current status may be found in the FIPA List of Specifications. A list of £rms and abbreviations used in the FIPA
specifications may be found in the FIPA Glossary.

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA
specifications and upcoming meetings may be found at http://www.fipa.org/.

Contents

1
2

3

STl 0] o1 PP PP PP
21 o o1 o | A O I LT o121 =T o1 = 11T o
2.1 COMPONENT NBITIE .ttt e e et et et e et et e e et e e et e et e et e e et e e e e e e e e e e e e e e e e e eeanas
P) 1] - GO PP UPRPRUPTPRN
PG R U Y10 To T Y/ PV o1 T @Yo [= 1=] [
2.4 NOtes 0N the Grammar RUIBSiiuiiii et ettt e e et e e et e e e e eanees
(RS (=T (=T 0ol PSP PRSPPI

© 2000 Foundation for Intelligent Physical Agents FIPA ACL Message Representation in Bit-Efficient Encoding

1 Scope

This document is part of the FIPA specifications and deals with message transportation between inter-operating agents.
This document also forms part of the FIPA Agent Management Specification [FIPA00023] and contains specifications for:

Syntactic representation of ACL in a bit-efficient form.

© 2000 Foundation for Intelligent Physical Agents

2 Bit-Efficient ACL Representation

This section defines the message transport syntax for a bit-efficient encoding which is expressed in standard EBNF

format (see Table 1).

Note that this representation is not compatible with [FIPAO0075].

FIPA ACL Message Representation in Bit-Efficient Encoding

Grammar rule component

Example

Terminal tokens are enclosed in double quotes

"

Non-terminals are written as capitalised identifiers

Expressi on

Square brackets denote an optional construct ["," Optional Arg]
Vertical bars denote an alternative between choices Integer | Fl oat
Asterisk denotes zero or more repetitions of the preceding expression Digit*

Plus denotes one or more repetitions of the preceding expression Al pha+

Parentheses are used to group expansions (A| B)*

Productions are written with the non-terminal name on the left-hand side,
expansion on the right-hand side and terminated by a full stop

ANonTer ni nal

= "termnal".

0x?7? is a hexadecimal byte 0x00
Table 1: EBNF Rules

White space is not allowed between tokens.
2.1 Component Name
The name assigned to this component is:
fipa.acl.rep.bitefficient.std
2.2 Syntax
ACLComuni cat i veAct = Message.
Message = Header MessageType MessagePar anet er* Endof Msg.
Header = Messagel d Versi on.
Messagel d = OxFA

| OxFB

| OxFC. /* see coment 1 bel ow */
Ver si on = Byte. /* see coment 2 bel ow */
Endof Msg = EndOf Col | ecti on.

EndCOf Col | ecti on

MessageType

User Defi nedMsgType
MsgTypeName

MessagePar anet er

0x01.

Predefi nedMsgType
User Defi nedMsgType.

0x00 MsgTypeNane.
Bi nWor d.

Pr edef i nedPar am

/* see comment 3 bel ow */

© 2000 Foundation for Intelligent Physical Agents FIPA ACL Message Representation in Bit-Efficient Encoding
| User Defi nedMsgPar am /* see coment 4 bel ow */

0x00 Par anet er Name Par anet er Val ue.

User Defi nedMsgPar am

Par anet er Nane = Bi nWr d.

Par ant er Val ue Bi nExpr essi on

Predefi nedMsgType = 0x01 /* accept - proposal */
| 0x02 /* agree */
| 0x03 /* cancel */
| O0x04 [* cfp */
| Ox05 /* confirm?*/
| 0x06 /* disconfirm*/
| O0x07 [* failure */
| 0x08 /[* inform*/
| 0x09 [* informif */
| OxOa /* informref */
| OxO0b /* not-understood */
| OxOc /* propagate */
| O0xO0d /* propose */
| OxOe [* proxy */
| OxOf [* query-if */
| O0x10 /* query-ref */
| Ox11 /[* refuse */
| Ox12 /* reject-proposal */
| Ox13 /* request */
| 0x14 [* request-when */
| 0x15 [* request-whenever */
| Ox16. /* subscribe */

Predef i nedMsgPar am 0x02 Agentldentifier /* :sender */

| 0x03 Reci pi ent Expr /* :receiver */

| 0x04 MsgCont ent [* :content */

| Ox05 ReplyWthParam /* :reply-with */
| 0x06 Repl yByParam [* :reply-by */

| 0x07 I nReplyToParam /* :in-reply-to */
| 0x08 ReplyToParam /* :reply-to */

| O0x09 Language /* :language */

| O0x0a Encodi ng /* :encoding */

| OxOb Ontol ogy /* :ontol ogy */

| OxOc Protocol /* :protocol */

|

0x0d ConversationlD. /* :conversation-id */
Agent I dentifier = 0x02 Agent Nane
[Addr esses]
[Resol ver s]
(User Def i nedPar aneter) *
EndCOf Col | ect i on.
Agent Name = Bi nWord.
Addr esses = 0x02 Url Col I ection

Resol vers = 0x03 AgentldentifierCollection

© 2000 Foundation for Intelligent Physical Agents

User Def i nedPar anet er

Url Col | ection

Ur |

Agent I dentifierCollection

Reci pi ent Expr
MsgCont ent

Repl yW t hPar am

0x04 Bi nWord Bi nExpr essi on.
(Url)* Endof Col I ecti on.

Bi nWor d.

(Agentldentifier)* EndCf Col |l ecti on.
Agent l dentifierCollection.
Bi nExpr essi on.

Bi nExpr essi on.

FIPA ACL Message Representation in Bit-Efficient Encoding

Repl yByPar am = Bi nDat eTi meToken.

I nRepl yToPar am = Bi nExpr essi on.

Repl yToPar am = Reci pi ent Expr.

Language = Bi nExpr essi on.

Encodi ng = Bi nExpr essi on.

Ont ol ogy = Bi nExpression.

Pr ot ocol = Bi nWord.

Conversationl D = Bi nExpr essi on.

Bi nWword = 0x10 Word 0x00
| Ox11 I ndex.

Bi nNunber = 0x12 Digits /* Decimal Number */
| Ox13 Digits. /* Hexadeci mal Nunber */

Digits = CodedNunber +.

Bi nString = 0x14 String 0x00 /* New string literal */
| O0x15 | ndex [* String literal from code table*/
| 0x16 Len8 ByteSeq /* New Byt eLengt hEncoded string */
| O0x17 Lenl6 ByteSeq /* New Byt eLengt hEncoded string */
| O0x18 I ndex /* BytelLengt hEncoded from code tabl e*/
|

0x19 Len32 Byt eSeq. /* New Byt elLengt hEncoded string */

Bi nDat eTi neToken = 0x20 Bi nDate
| 0x21 BinDate TypeDesi gnator.

Bi nDat e = Year Month Day Hour M nute Second M | |i second.
/* see coment 9 bel ow */

Bi nExpr essi on = Bi nExpr
| OXFF BinString. /* See comment 10 bel ow */

Bi nExpr = BinWrd

© 2000 Foundation for Intelligent Physical Agents FIPA ACL Message Representation in Bit-Efficient Encoding

| BinString
Bi nNunber
| ExprStart Bi nExpr* ExprEnd.

Expr St art = 0x60 /* Level down (i.e. ‘(' —character) */
| 0x70 Word 0x00 /* Level down, new word follows */
| O0x71 | ndex /* Level down, word code follows */
| O0x72 Digits /* Level down, numnber follows */
| Ox73 Digits /* Level down, hex nunber follows */
| 0x74 String 0x00 /* Level down, new string follows */
| O0x75 | ndex" /* Level down, string code follows */
| Ox76 Len8 String /* Level down, new byte string (1 byte) */
| Ox77 Lenl6 String /* Level down, new byte string (2 byte) */
| Ox78 Len32 String /* Level down, new byte string (4 byte) */
| 0x79 I ndex". /* Level down, byte string code follows */
Expr End = 0x40 /* Level up (i.e. ")’ —character) */
| 0x50 Word 0x00 /* Level up, new word follows */
| 0x51 | ndex /* Level up, word code follows */
| 0x52 Digits /* Level up, nunber follows */
| 0x53 Digits /* Level up, hexadeci mal numnber follows */
| 0x54 String 0x00 /* Level up, new string follows */
| Ox55 | ndex /* Level up, string code follows */
| Ox56 Len8 String /* Level up, new byte string (1 byte) */
| Ox57 Lenl6 String /* Level up, new byte string (2 byte) */
| Ox58 Len32 String /* Level up, new byte string (4 byte) */
| O0x59 I ndex. /* Level up, byte string code follows */
Byt eSeq = Byte*.
I ndex = Byte
| Short. /* See comment 7 bel ow */
Len8 = Byte. /* See comment 8 bel ow */
Lenl6 = Short. /* See comment 8 bel ow */
Len32 = Long. /* See comment 8 bel ow */
Year = Byte Byte.
Mont h = Byte.
Day = Byte.
M nut e = Byte.
Second = Byte.
MI1lisecond = Byte Byte.
Word = /* as in [FIPAOOO70] */
String = /* as in [FI PAOOO70] */

CodedNunber = [/* See coment 5 bel ow */

© 2000 Foundation for Intelligent Physical Agents FIPA ACL Message Representation in Bit-Efficient Encoding

TypeDesi gnat or = /* as in [FIPAO0OO70] */

2.3 Using Dynamic Code Tables

The transport syntax can be used with or without dynamic code table. Using dynamic code tables is an optional feature,
which gives more compact output but might not be appropriate if communicating peers does not have sufficient memory
(for example, in case of low-end PDAs or smart phones).

To use dynamic code tables the encoder inserts new entries (for example, Wor d, St ri ng, etc.) into a code table while
constructing bit-efficient representation for ACL message. The code table is initially empty and whenever a new entry is
added to the code table, the smallest available code number is allocated to it. There is no need to transfer these index
codes explicitly over the communication channel. Once the code table becomes full and a new code needs to be added,
the sender first removes si ze>>3" entries from the code table using a Least Recently Used (LRU) algorithm and then
adds a new entry to code table. For example, should the code table size be 512 entries, 64 entries are removed.
Correspondingly the decoder removes entries from the code table when it receives a new entry from the encoder.

The size of the code table, if used, is between 256 (2°) and 65536 (2'°) entries. The output of this code table is always one
or two bytes (one byte only when the code table size is 2°). Using two-byte output code wastes some bits, but allows for
much faster parsing of messages. The code table is unidirectional, that is, if sender A adds something to the code table
when sending a message to B, then B cannot use this code table entry when sending a message back to A.

2.4 Notes on the Grammar Rules

1. The first byte defines the message identifier. The identifier byte can be used to separate bit-efficient ACL messages
from (for example) string-based messages and separate different coding schemes. The value OxFA defines a bit-
efficient coding scheme without dynamic code tables and the value OxFB defines a bit-efficient coding scheme with
dynamic code tables. The message identifier OxFC is used when dynamic code tables are being used, but the sender
does not want to update code tables (even if message contains strings that should be added to code table).

2. The second byte defines the version number. The version number byte contains the major version number in the upper
four bits and minor version number in the lower four bits. This specification defines version 1.0 (coded as 0x10).

3. All message types defined in this specification have a predefined code. If an encoder sends an ACL message with a
message type which has no predefined code, it must use the extension mechanism which adds a new message type
into code table (if code tables are being used).

4. All message parameters defined in this specification have a predefined code. If a message contains a user defined
message parameter, an extension mechanism is used (byte 0x00) and new entry is added to code table (if code
table is used).

5. Numbers are coded by reserving four bits for each digit in the number's ASCII representation, that is, two ASCII
numbers are coded into one byte. Table 1 shows a 4-bit code for each number and special codes that may appear in
ASCII coded numbers.

If the ASCII presentation of a number contains odd number characters, the last four bits of the coded number are set
to zero (the Paddi ng token), otherwise an additional 0x00 byte is added to end of coded number. If the number to
be coded is integer, decimal number, or octal humber, the identifier byte 0x12 is used. For hexadecimal numbers,
the identifier byte 0x13 is used. Hexadecimal numbers are converted to integers before coding (the coding scheme
does not allow characters from a through f to appear in number form).

Numbers are never added to a dynamic code table.

! Right shifted by 3 bit positions — approximately 10%.

© 2000 Foundation for Intelligent Physical Agents FIPA ACL Message Representation in Bit-Efficient Encoding

7.

10.

Token Code Token Code
Paddi ng 0000 7 1000
0 0001 8 1001
1 0010 9 1010
2 0011 + 1100
3 0100 E 1101
4 0101 - 1110
5 0110 . 1111
6 0111

6. Table 1: Binary Representation of Number Tokens

I ndex is a pointer to code table entry and its size (in bits) depends on the code table size. If the code table size is
256 entries, the size of the index is one byte; otherwise its size is two bytes (represented in network byte order).

Byt e is a one-byte code word, Short is a short integer (two bytes, network byte order) and Long is a long integer
(four bytes, network byte order).

Dates are coded as numbers, that is, four bits are reserved for each ASCII number (see comment 5 above).
Information whether the type designator is present or not, is coded into identifier byte. These fields always have static
length (two bytes for year and milliseconds, one byte for other components).

None of the actual content of the message (the information contained in the : cont ent parameter of the ACL
message) is coded nor are any of its components are added to a code table.

© 2000 Foundation for Intelligent Physical Agents FIPA ACL Message Representation in Bit-Efficient Encoding

3 References

[FIPAO0023] FIPA Agent Management Specification. Foundation for Intelligent Physical Agents, 2000.
http://ww. fipa.org/specs/fipa00023/

[FIPAOO067] FIPA Agent Message Transport Service Specification. Foundation for Intelligent Physical Agents, 2000.
http://ww. fipa.org/specs/fipa00067/

[FIPAOOO70] FIPA ACL Message Representation in String Specification. Foundation for Intelligent Physical Agents,
2000.
http://ww. fipa.org/specs/fipa00070/

[FIPAOOO75] FIPA Agent Message Transport Protocol for IIOP Specification. Foundation for Intelligent Physical
Agents, 2000.
http://ww. fipa.org/specs/fipa00075/

