

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA Ontology Service Specification

Document title FIPA Ontology Service Specification
Document number XC00086C Document source FIP Architecture Board
Document status Experimental Date of this status 2000/06/15
Supersedes FIPA00006
Contact fab@fipa.org
Change history
2000/06/15 Approved for Experimental

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/

Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the
use of this specification.

 ii

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies.

The members of FIPA are individually and collectively committed to open competition in the development of agent-based
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership,
governmental body or international organization without restriction. In particular, members are not bound to implement or
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification
can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification
may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their
current status may be found in the FIPA List of Specifications. A list of terms and abbreviations used in the FIPA
specifications may be found in the FIPA Glossary.

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA
specifications and upcoming meetings may be found at http://www.fipa.org/.

 iii

Contents

1 Scope... 1
2 Ontology Service ... 2

2.1 Rationale for Explicit Ontologies ... 2
2.2 Benefits for Applications .. 3
2.3 Sample Scenarios ... 3

2.3.1 Scenario 1 – Definition of Terms Querying... 3
2.3.2 Scenario 2 – Shared Ontology Selection... 4
2.3.3 Scenario 3 – Equivalence Testing... 4
2.3.4 Scenario 4 – Ontology Location ... 5
2.3.5 Scenario 5 – Term Translation ... 5

3 Ontology Service Reference Model .. 7
3.1.1 Ontology Agent Services ... 7

3.2 Ontology Naming .. 8
3.3 Relationships Between Ontologies .. 8

3.3.1 Extending Ontologies.. 8
3.3.2 Identical Ontologies .. 9
3.3.3 Equivalently Ontologies ... 9
3.3.4 Weakly Translatable Ontologies..10
3.3.5 Strongly Translatable Ontologies...10
3.3.6 Approximately Translatable Ontologies ..11
3.3.7 General Properties...11

3.4 Registration of the Ontology Agent with the DF ...12
3.4.1 Querying the DF..14

4 Ontology Service Ontology ..17
4.1 Object Descriptions ..17

4.1.1 Ontology Description ...17
4.1.2 Translation Description...17

5 Meta Ontology..18
5.1 The OKBC Knowledge Model ..18

5.1.1 Symbols...32
5.2 Responsibilities, Actions and Predicates Supported by the Ontology Agent...33

5.2.1 Responsibilities of the Ontology Agent ..34
5.2.2 Assertion..34
5.2.3 Retraction...35
5.2.4 Query ...35
5.2.5 Modify ..36
5.2.6 Translation of the Terms and Sentences between Ontologies...36
5.2.7 Exceptions ...38

5.3 Interaction Protocol to Agree on a Shared Ontology...40
5.4 Meta Ontology Predicates and Actions ..41

5.4.1 Predicates ..41
5.4.2 Actions...41

6 References...42
7 Informative Annex A — Ontologies and Conceptualizations...43

7.1 Ontologies vs. Conceptualizations ...43
7.2 A Formal Account of Ontologies and Conceptualizations ...44

7.2.1 What is a Conceptualization...44
7.2.2 What is an Ontology ..45

7.3 The Ontology Integration Problem ..46
7.4 Basic Kinds of Ontologies ...47

7.4.1 From Top-Level to Application-Level...47
7.4.2 Shareable Ontologies and Reference Ontologies ..48

 iv

7.4.3 Meta-Level Ontologies..48
7.5 References ..48

8 Informative Annex B — Guidelines to Define a New Ontology ..50
8.1 Set of Principles to Useful in the Development of Ontologies ..50
8.2 Ontology Development Process...50

8.2.1 Project Management Activities..50
8.2.2 Development Activities ...51
8.2.3 Integral Activities ...51
8.2.4 Ontology Life Cycle ...51

8.3 Methodology to Build Ontologies ...51
8.3.1 Specification ...52
8.3.2 Knowledge Acquisition...53
8.3.3 Ontology and Natural Language ..53

8.4 References ..54

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 1

1 Scope
The model of agent communication in FIPA is based on the assumption that two agents, who wish to converse, share a
common ontology for the domain of discourse. It ensures that the agents ascribe the same meaning to the symbols used
in the message. For a given domain, designers may decide to use ontologies that are explicit, declaratively represented
(and stored somewhere) or, alternatively, ontologies that are implicitly encoded with the actual software implementation of
the agent themselves and thus are not formally published to an ontology service.

This FIPA specification deals with technologies enabling agents to manage explicit, declaratively represented ontologies.
An ontology service for a community of agents is specified for this purpose. It is required that the service be provided by a
dedicated agent, called an Ontology Agent (OA), whose role in the community is to provide some or all of the following
services:

• discovery of public ontologies in order to access them,

• maintain (for example, register with the DF, upload, download, and modify) a set of public ontologies,

• translate expressions between different ontologies and/or different content languages,

• respond to query for relationships between terms or between ontologies, and,

• facilitate the identification of a shared ontology for communication between two agents.

This specification deals only with the communicative interface to such a service while internal implementation and
capabilities are left to developers. It is not mandated that every OA be able to execute all those tasks (for example,
translation between ontologies, and identification of a shared ontology are in general very difficult and not always possible
to realize), but every OA must be able to participate into a communication about these tasks (possibly responding that it
is not able to execute the translation task). The interface is specified at the agent communication level (see [FIPAacl] and
[FIPA00023]) as opposed to a computational API. Therefore, the specification defines the interaction protocols, the
communicative acts and, in general, the vocabulary that agents must adopt when using this service.

This specification enables developers to build:

• agents that access such a service,

• agents that provide it, and,

• agents able to negotiate at run-time a shared ontology for communication.

The application of this specification does not prevent the existence of agents that, for a given domain, use ontologies
implicitly encoded with the implementation of the agents themselves. In these cases full agent communication and
understanding can still be obtained, however the services provided by the OA cannot apply to implicit encoded ontologies.

It is not intention of this document to mandate that every AP must include an Ontology Agent. However, in order to
promote interoperability, if one OA exists, then it must comply with these specification. And, if the services here
described are required by a specific agent platform implementation, then they must be implemented in compliance with
this specification.

In order to keep the applicability of the specification as unrestricted as possible, the approach used is platform
independent. In particular, this specification does not mandate the storage format of ontologies but only the way agents
access an ontology service. However, in order to specify the service, an explicit representation formalism has been
specified. It is the FIPA-Meta-Ontology (see section 5) that allows communication of knowledge between agents. As
far as possible, care has been taken to integrate existing formalisms, such as [OKBC] and [W3CRDF].

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 2

2 Ontology Service
An OA is an agent that provides access to one or more ontology servers and which provide ontology services to an agent
community. As well as all the other agents, the OA registers its service with the DF and it also registers the list of
maintained ontologies and their translation capabilities in order to allow agents to query the DF for the specific OA that
manages a specific ontology.

Every agent can then request the services of the OA by using the communicative interface specified in section 6. In
particular, they can request to define, modify or remove terms and definitions of the ontology; they can request to
translate expressions between two ontologies for which there exists a mapping; they can query for definitions, or
relationships between terms or between ontologies; finally, they can request to find a shared ontology for communication
with another agent. Even if any agent requests one of the above services, the OA reserves the right to refuse the request.

The realization of this communication obviously needs an agreement on the language to communicate facts about
ontologies. This is described in section 3.2, Ontology Naming where the subsumed knowledge model and the FIPA meta-
ontology is specified. It describes the primitives, and normatively define their names, used in the communication, like
concepts, parameters, relations, etc. It must be noticed that this specification is neutral in respect to the language used
to store and represent the ontology (for example, RDF, KIF, ODL, …), while it only specifies the language to
communicate about ontologies.

Section 5.3, Interaction Protocol to Agree on a Shared Ontology specifies the interaction protocol that two agents can use
to agree on a shared ontology for communication.

The document concludes with two informative annexes. Section 7, gives a clear definition of what is intended with the term
ontology and, in particular, what is the difference between a conceptualization, an ontology, and a knowledge base.
Section 8, lists an informative set of guidelines to help developers to define well-founded new ontologies.

2.1 Rationale for Explicit Ontologies
The FIPA communication model defined in [FIPA00023] is based on the assumption that communicating agents share an
ontology of communication defining speech acts and protocols (see Figure 1). In order to have fruitful communication,
agents must also share an ontology of their domain of application. In an open environment, agents are designed around
various ontologies (either implicit or explicit). For allowing their communication, explicit ontologies are however necessary,
together with a standard mechanism to access and refer to them (such as an access protocol or a naming space).

Ontology

Agent A Agent B

Ontology QueryOntology Query

ACL Communication =
Ontology-Based Communication

Figure 1: Ontology-Based Communication Model

Without explicit ontologies, agents need to share intrinsically the same ontology to be able to communicate and this is a
strong constraint in an open environment where agents, designed by different programmers or organizations, may enter
into communication.

An explicit ontology is considered to be declaratively represented as opposed to implicitly, procedurally encoded. It can
be then considered as “a referring knowledge” and, as a consequence, could be outside the communicating agents;
managed by a dedicated ontology agent.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 3

As described in section 7, an ontology is not only a vocabulary but also contains explicit axioms to approximate meaning,
that is, to constrain the set of intended models. Explicit axioms allow validation of specifications, unambiguous definition
of vocabulary, automation of operations like classification and translation.

Several benefits can be envisioned by having explicitly represented ontologies, such as enabling querying for concepts,
updating an ontology, reusing ontologies by extending or specializing existing ones, translation between different
ontologies, sharing through referring to ontology names and locations, etc.

2.2 Benefits for Applications
There are many applications that benefit from having a dedicated agent that manages and controls access to a set of
explicit ontologies.

In information retrieval applications, the size of some linguistic ontologies may prevent an agent from storing the ontology
in its address space, so that agents need to remotely access and refer to ontologies for disambiguation of user queries,
for using information about taxonomies of terms or thesauri to enhance the quality of retrieved results, etc. The definition
of a standard interface to access and query an ontology service can increase and simplify the interoperability between
different systems.

Semantic integration of heterogeneous information sources in an open and dynamic environment, such as the Internet or a
digital library, may also benefit from an ontology service. There are already implementations [Bayardo96] that use one
domain ontology to integrate several information sources, managed by a dedicated agent, whilst still allowing each source
to use its private ontology. Every user can also have their own ontology depending on their preference, their role in the
domain or simply their known language. Every used ontology is a subset of the domain ontology or there exists a map
between it and the domain ontology; the knowledge about these relationships (subset and mapping) is usually maintained
by some ontology-dedicated agents.

Some applications use machine learning techniques to adaptively extend an ontology based on the interaction of the user
with the system. In this case, at the execution time, several user agents may compete or collaborate to request a
dedicated agent to modify an ontology.

2.3 Sample Scenarios

2.3.1 Scenario 1 – Definition of Terms Querying

This scenario shows the usage of an Ontology Agent to access definition of terms when using large linguistic ontologies:

Let’s consider Agent B able to index pictures based on their captions and send them on a demand basis:

1. Agent A, which for instance is a user interface agent, is willing to get pictures of diseased citrus for its user, who is a

farmer and wants to discover a diagnosis for his citrus trees. Agent A, then, requests Agent B, to send pictures of
diseased citrus by referring to a given domain ontology, for example, the farmer ontology.

2. Agent B discovers that no pictures under the name citrus are available. Before sending the answer to Agent A, Agent

B queries the appropriate OA (where the farmer ontology resides) to obtain sub-species of citrus (which may be
also sub-species of the diseased property) within the given ontology.

3. The OA answers Agent B, informing it that oranges and lemon are sub-species of citrus.

4. Then, Agent B finds pictures of diseased lemon and diseased orange and sends them to the Agent A.

5. The scenario might continue with the user, that is, the farmer, looking at the several pictures and finding a match with

the problem his trees have. When he has found the problem, he may then ask Agent A to find a diagnosis and a cure
for it. Even in this case, the service provided by the OA might be useful again.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 4

6. The existence of an explicit declarative ontology managed by an external agent, the OA, allows Agent B to
concentrate on its actual task of indexing and sending pictures rather than on the maintenance of the ontology itself.
Agent B may also be more light-weight as it is not necessary for it to encode all the ontology since relations and
definition of concepts can be accessed on demand by querying the OA.

Even Agent A may need to access the same OA, for instance to explain to its user the type of diseased as in the figure.

2.3.2 Scenario 2 – Shared Ontology Selection

Agent SP is the service provider for electronic commerce of a given merchant. It has simple behaviours referring to the
sell-products ontology. It has other more complex behaviours referring to the sell-wholesale-products
ontology. The complex behaviours are designed as extensions of the simple ones. The sell-wholesale-products
ontology is defined explicitly in an ontology server (for example, Ontolingua) as an extension of the sell-products
ontology.

The ontology server is accessible by agents of a given FIPA compliant platform through an OA named OA1. Following the
FIPA ontologies naming scheme, these two ontologies are named as follows: sell-products and sell-wholesale-
product. Both of these ontologies refer to the electronic commerce domain.

Agent SP would like to sell products. It makes a call for proposal using a call-for-proposals (CFP) communicative act (see
[FIPA00042]); the content of this communicative act refers to the sell-wholesale-products ontology.

Agent C is a customer. It has only simple behaviours referring to the sell-products ontology. Agent C does not know
the sell-wholesale-products ontology and as a consequence has no precise idea of the purpose of this CFP.
However Agent C believes that the CFP of Agent SP is interesting to it, for instance because:

• it believes that all CFPs from Agent SP are interesting to it, or,

• a third party agent knowing the needs of Agent C and understanding this CFP has recommended Agent C to answer
this CFP, or,

• it has behaviour referring to the electronic commerce domain (that is at least the case in this example).

Following the CFP of Agent SP, three different protocols of interaction could be considered:

1. Agent C queries Agent SP to know if other ontologies can be used in this CFP. Agent SP answers that the sell-

products ontology can be used. If Agent C does not know this ontology (this general case does not apply in this
example), the process of interaction is repeated.

2. Agent C queries the DF to determine if it knows OAs providing access to electronic commerce domain. The DF
answers to Agent C with a list of OAs including OA1. Agent C queries all these OAs about ontologies related to the
sell-wholesale-products. OA1 informs Agent C that the sell-wholesale-products ontology is an
extension of sell-wholesale-products ontology. Agent C asks Agent SP if it can use the sell-products
ontology.

3. Agent C queries the DF to determine if it knows the address of OA1 which the DF gives back. Agent C queries OA1
about ontologies and OA1 informs Agent C that the sell-wholesale-products ontology is an extension of
sell-products ontology. Agent C asks Agent SP if it can use the sell-products ontology.

2.3.3 Scenario 3 – Equivalence Testing

In this scenario an agent has to check the logical equivalence of two ontologies:

1. An ontology designer in US declares the car-product ontology and associated this to the ontology agent OA2,

which is referred within the OA2 under the name car-product, following the FIPA ontologies naming scheme.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 5

2. The ontology designer declares a complete French translation of its car-product ontology to the ontology agent
OA1 in France as the voiture ontology. Moreover these two ontologies are declared equivalent to OA1. The exact
mapping is provided to OA1.

3. Agent A (in the US) requests OA2 to provide an ontology of domain cars which returns the ontology name car-
product.

4. Agent A wants to communicate with Agent B (in France) about cars with the ontology car-product. Note that
agent Agent A does not know this ontology.

5. Agent A queries if OA1 is able to provide an ontology equivalent to car-product. If it is, OA1 returns voiture to
Agent A;

6. Agent A informs Agent B that these two ontologies voiture and car-product are equivalent and that OA1 can be
used as a translator.

7. The dialogue between Agent A and Agent B can then start.

2.3.4 Scenario 4 – Ontology Location

In this scenario, an Agent A wants to know the list of ontologies referring to the term car. The agent believes that such an
ontology exists because it has received a natural language request from a user including this term. However, it has no
idea of the kind of concepts underlying this symbol, and it would like to access its definition without any human
intervention.

1. Agent A wants to know the list of ontologies referring to a given term.

2. Agent A queries the DF for the list of OAs available.

3. Agent A queries each OA for the list of ontologies that include the given term.

4. The OA queries all the ontologies that it is able to access, about an object, a property and a class labelled with the
given term.

2.3.5 Scenario 5 – Term Translation

This scenario gives a pragmatic example illustrating the "use of translation of terms" in a multi-agent context and it
involves the naming of terms.

Consider a project integrating two legacy databases. Users of the integrated system want to continue seeing the
integrated databases in the terms they are used to, the terms of the legacy database they were using. The first database
contains information about the aircraft parts owned by the aircraft manufacturer; the second database describes aircraft
parts owned by the aircraft operator.

In each database, an aircraft part has a name. However, one database calls it a name and the other calls it nomenclature.
In other words, name and nomenclature are based on the same concept definition (the name of a part).

A query server answers queries from user agents (user interfaces and agents acting for users). The query server uses a
domain ontology that integrates the data source ontologies. The user interface is based on a user model with user
ontologies. This permits one user to specify and see part nomenclature in his user interface while another will see part
name. We translate terms to answer queries based on each user ontology, and we also translate queries for each
database (see Figure 2).

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 6

DF

Agent A OA

Ontology
Server 1

Ontology
Server 2

Database 1 Database 2

Figure 2: Model of Scenario 5

1. An agent, Agent A, wants to translate a given term from a first ontology into the corresponding term from a second
one.

2. Agent A queries the DF for an OA which supports the translation between these ontologies.

3. The DF returns the name of a given OA; this OA knows the format of the ontologies involved (XML, OKBC, etc.) and
has capabilities to make translation between these ones.

4. Agent A queries this OA.

5. The OA translates the requested term from Ontology Server 1 to Ontology Server 2 where Ontologies 1 and 2 contain
the terms defined respectively in Databases 1 and 2.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 7

3 Ontology Service Reference Model
Ontologies are stored at an ontology server. In general, several servers may exist with different interfaces and different
capabilities. The OA allows agents to discover ontologies and servers and to access their services in a unique way, that is
more suitable to the agent communication mechanism. Furthermore, it can implement extra functionalities such as a
translation service or it can bring to the agent community knowledge about relationships between the different ontologies.
This reference model given in Figure 3 does not preclude that in some particular implementations, the OA might wrap
directly one ontology server.

Non-FIPA Components

FIPA Components

Agent 1

Message Transport Service

Ontology
Agent 2 Agent 2 DF

Ontology
Agent 1

Ontology
Server 2
(ODL)

Ontology
Server 1

(Ontolingua)

Ontology
Server 3
(XML)

Ontology
Designer

OQL HTTPOKBC

Figure 3: Ontology Service Reference Model

The scope of this FIPA specification is ACL level communication between agents and not communication between the
OAs and the ontology servers (for example, OKBC, OQL or any other proprietary protocol). Therefore, a FIPA-compliant
OA will have to be developed on a custom basis to support interfaces with non-FIPA compliant ontology severs.

3.1.1 Ontology Agent Services

The OA must be able to participate in a communication about the following tasks, possibly responding that it is not able
to execute these tasks:

• helping a FIPA agent in selecting a shared (sub)ontology for communication,

• creating and updating an ontology, or only some terms of an ontology,

• translating expressions between different ontologies (different names with same meanings),

• responding to queries for relationships between terms or between ontologies, and,

• discovering public ontologies in order to access them.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 8

Furthermore, the OA allows the Ontology Server to make its ontologies publicly available in the agent domain.

3.2 Ontology Naming
Each ontology is stored at an ontology server. The OA registers the list of supported ontologies with the DF and within an
OA, each ontology is uniquely named, registered and identified by a logical name managed by the OA. It hides from the
agent community the physical name of the ontology, both the name of the server (for example, Ontolingua) and the actual
name of the ontology itself. The OA is only responsible for knowing about the mapping to the physical name, while all
ACL messages and references are assumed to refer directly to this ontology identifier1.

3.3 Relationships Between Ontologies
In an open environment, agents may benefit, in some applications, from knowing the existence of some relationships
between ontologies, for instance to decide if and how to communicate with other agents. Even if in principle every agent
may believe such relationships, the ontology agent has the most adequate role in the community to know that. It can be
then queried for the value of such relationships and it can use that for translation or for facilitating the selection of a shared
ontology for agent communication. The following predicate must be used for this purpose:

(ontol-relationship ?O1 ?O2 ?level)

which is defined to be true when a relationship of level level exists between the two ontologies in the arguments O1 and
O2. The argument level may assume one of the values specified in Table 12.

Extension When O1 extends the ontology O2

Identical When the two ontologies O1 and O2 are identical

Equivalent When the two ontologies O1 and O2 are equivalent

Weakly-Translatable When the source ontology O1 is weakly translatable to
the target ontology O2

Strongly-Translatable When the source ontology O1 is strongly translatable to
the target ontology O2

Approx-Translatable When the source ontology O1 is approximately
translatable to the target ontology O2

Table 1: Ontology Relationship Levels

3.3.1 Extending Ontologies

It is common and good engineering practice to build a new ontology by extending or combining existing ones. The
extension level of relationship captures this reuse practice.

When (ontol-relationship O1 O2 extension) holds, then the ontology O1 extends or includes the ontology
O2. Informally this means that all the symbols that are defined within the O2 ontology are found in the O1 ontology, with
the very important restriction that the properties expressed between the entities in the O2 ontology are conserved in the
O1 ontology.

1 Based on these assumptions, it might happen that two OAs register the same physical ontology with different logical names, or that two OAs
register the same logical name for two different physical ontologies. The assumption is here that the OAs are themselves responsible for
discovering such equivalence and exploiting this knowledge in the service they provide.
2 The problem of deciding if two logical theories (as ontologies in general are) have relationships to each other, is in general computationally very
difficult. For instance, it can quickly become undecidable if two ontologies are identical when the expressive power of the ontologies concerned
is high enough. Therefore, asserting that two ontologies have a relationship to each other as defined in this section, will often require manual
intervention.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 9

This specification makes no distinction between extension and inclusion relationships between ontologies.

Ontology 1

Fruit

LemonApple Orange

Ontology 2

Fruit

CitrusApple

Lemon Orange

Figure 4: Example Extension of an Ontology

Example 1 (extension): In the Ontology O1 (see Figure 4) the class Fruit is split into the Apple, Lemon and Orange
classes. The ontology O2 extends O1 by inserting the class Citrus between the class Fruit and both classes Orange and
Lemon. In this case the predicate holds since all entities in O1 are in O2 and since all relations in O1 still hold. For
instance, in O1 Lemon is a Fruit, and in O2 Lemon is a Citrus and Citrus is a Fruit implies that Lemon is a Fruit.

Example 2 (inclusion): O1 defines Cars, O2 defines Cars and Vans by reusing without any modification all classes
involved in the Cars class defined in O1. Once more (ontol-relationship O2 O1 extension) holds.

3.3.2 Identical Ontologies

This level is used to assert that two ontologies O1 and O2 are identical. By identical, we mean that the vocabulary, the
axiomatization and the representation language used are physically identical, like are for instance two mirror copies of a
file. However two identical ontologies could be named and referred under different names3.

3.3.3 Equivalently Ontologies

Two ontologies O1 and O2 are said to be equivalent whenever they share the same vocabulary and the same logical
axiomatization, but possibly are expressed using different representation languages (for instance, Ontolingua and XML).

If we consider a particular ontology server with given deduction capabilities, everything that is provable or deductible from
O1 will be provable from O2 and vice versa. Moreover, the following property holds: if O1 and O2 are equivalent then O1
and O2 are strongly translatable in both ways. In this case only a mapping between the representation languages is
required4.

3 It may be important to notice that two identical ontologies may still commit to different conceptualizations, since they may differ in the way their
axiomatizations reflect the intended models (see section 7, Informative Annex A — Ontologies and Conceptualizations). Consider for instance
two ontologies identical to O1, consisting only of the axioms that reflect the ISA relationships between kinds of fruit: one may commit to a
conceptualization where the instances of fruit classes are intended as solid things, while the other one may assume that fruits are amounts of
fruit stuff. As long as the commitments with respect to the object/stuff distinction are not made explicit, the two ontologies, although identical, may
be used by different applications for very different things. Recognising the different conceptualizations may not be a problem as long as the
vocabulary is the same, but it may lead to serious troubles in case of translatable ontologies, where a wrong ontology translation may be
performed on the basis of a mapping between the axiomatizations. This problem is in principle unavoidable, and can be limited only by resorting to
a common top-level ontology, used to make explicit the intended conceptualization without the need of detailed axiomatizations.
4 It must be noticed that equivalent ontologies may still be served by different ontology servers with different deduction capabilities. That means, in
turn, that equivalence between ontologies does not guarantee equivalence of results: what an agent can do or cannot do when using an
ontology does not only depend on the ontology but on the couple (ontology, ontology server).

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 10

3.3.4 Weakly Translatable Ontologies

This level relates two ontologies Osource and Odest when it is possible to translate from Osource to Odest, even if
with a possible loss of information. Odest is then supposed to share a subset of the vocabulary and axiomatization of
Osource. It means that some terms or relationships from Osource will be possibly simplified when translated to Odest.
It means also that some terms or relationships will not be translatable to Odest, because they do not appear in the
Odest axiomatizations. Nevertheless, a weak translation should not introduce any inconsistency.

For example, let us consider the French (Osource) and English (Odest) simple ontologies on fruit such as (see Figure
5):

• In Osource a Fruit is an Agrume or Pomme or Poire and an Agrume is either a Citron, an Orange or a

Pamplemousse.

• In Odest a Fruit is either a Lemon, an Orange or an Apple.

Osource is weakly translatable to Odest with the vocabulary mapping (Pomme ⇒ Apple; Citron ⇒ Lemon; Orange ⇒
Orange; Fruit ⇒ Fruit) with a loss of information concerning Pamplemousse, Poire and the conceptualization of Agrume
as the subclass of Fruit containing Citron, Pamplemousse and Orange. Nevertheless after translation Lemons and
Oranges are still Fruits.

Ontology French

Fruit

PommeArgume

Citron Orange

Poire

Pampelmousse

Ontology English

Fruit

LemonApple Orange

Figure 5: Example Weakly-Translatable Ontologies

3.3.5 Strongly Translatable Ontologies

An ontology Osource is said to be related with level Strongly-Translatable to ontology Odest if:

1. the vocabulary of Osource can be totally translated to the vocabulary of Odest,

2. the axiomatization of Osource holds in Odest,

3. there is no loss of information from Osource to Odest, and,

4. there is no introduction of inconsistency.

However, the representation languages used by Osource and Odest can still be different.

For example, let us consider the English (Osource) and French (Odest) ontologies, such as (see Figure 6):

• In Osource a Fruit is a either a Citrus, an Apple or a Pear, and a Citrus is either a Lemon or an Orange.

• In Odest a Fruit is an Agrume or a Pomme or a Poire, and an Agrume is either a Citron an Orange or a

Pamplemousse.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 11

Osource is Strongly-Translatable to Odest with the vocabulary mapping (Apple ⇒ Pomme; Lemon ⇒ Citron; Orange ⇒
Orange; Fruit ⇒ Fruit, Pear ⇒ Poire, Citrus ⇒ Agrume). Moreover every property that holds in Osource holds in Odest
after translation. Thus this is an example of a strongly translatable predicate. The reverse translation, that is, Odest to
Osource is not strongly translatable since Pamplemousse is not defined in Osource.

Ontology French

Fruit

PommeArgume

Citron Orange

Poire

Pampelmousse

Ontology English

Fruit

CitrusApple

Lemon Orange

Pear

Figure 6: Example of Strongly-Translatable Ontologies

3.3.6 Approximately Translatable Ontologies

This level is the less restrictive. Two ontologies Osource and Odest are said to be related with level Approx-
Translatable if they are Weakly-Translatable with introduction of possible inconsistencies, for example, some of
the relations become no more valid and some constraints do not apply anymore.

For example, let us consider two ontologies that refer to a term which has slightly different meanings according to the
context in which it is used. The two ontologies are respectively ingredients-for-chinese-cooking and
ingredients-for-european-cooking. In both ontologies, we consider the two following classes Parsley and
Pepper. The difference is that in the ingredients-for-chinese-cooking ontology, Coriander is classified as a sort
of Parsley, because its leaves are used and that in the ingredients-for-european-cooking ontology, Coriander is
classified as a sort of Pepper, because only its seeds (called “Chinese” pepper) are used. The term Coriander enjoys
different properties in the two ontologies, even if it refers to the same plant.

If we consider a translation between these two ontologies, the translation of Coriander (in the ingredients-for-
chinese-cooking ontology) by Coriander (in the ingredients-for-european-cooking ontology) can be useful
mainly because as said previously the term designates the same plant. Nevertheless, some of the properties expressed
in the ingredients-for-chinese-cooking ontology do not hold any more in the ingredients-for-european-
cooking ontology and vice versa.

3.3.7 General Properties

The following properties hold between level of relationships:

• Strongly-Translatable ⇒ Weakly-Translatable ⇒ Approx-Translatable

• Equivalent (O1, O2) ⇒ Strongly-Translatable (O1, O2) ∧ Strongly-Translatable (O2, O1)

• Identical ⇒ Equivalent

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 12

3.4 Registration of the Ontology Agent with the DF
In order for an agent to advertise its willingness to provide a set of ontology services to an agent domain, it must register
with a DF (as described in [FIPA00023]). Of course, the DF is not responsible for ensuring the validity of the provided
service.

As part of this registration process a number of constant values are introduced which universally identify the ontology
services. The service-description object registered with the DF must include the following parameters:

• :type must be declared as a fipa-oa service,

• :ontology must include the constant FIPA-Ontol-Service-Ontology, which identifies the set of actions that
can be requested to be performed by an OA, and,

• :properties must include the set of supported ontologies:

property (
 :name supported-ontologies
 :value (set ontology-description))

In addition to the set of supported ontologies, the OA may also register its translation capabilities between different
ontologies (if it has any). Notice that the specification does not prevent non-OA agents to also have translation
capabilities. The translation capabilities may include ontology translation, language translation or both. The following
constant values must be used to register translation services:

• :type parameter must be declared as a translation-service,

• :ontology must include the constant FIPA-Meta-Ontology, which identifies the set of actions that can be
requested to be performed by an OA, regarding translation services, and,

• :properties must include the set of available ontology translations:

property (
 :name ontology-translation-types
 :value (set translation-description))

and/or the list of available language translation types:

property (
 :name language-translation-types
 :value (set translation-description))

The definitions for the objects ontology-description and translation-description are given in section 4,
Ontology Service Ontology.

The following is an example of registration of an OA with the DF:

(request
 :sender
 (agent-identifier
 :name oa@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name df@bar.com
 :addresses (sequence iiop://bar.com/acc)))

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 13

 :language FIPA-SL0
 :protocol FIPA-Request
 :ontology FIPA-Agent-Management
 :content
 (action
 (agent-identifier
 :name df@bar.com
 :addresses (sequence iiop://bar.com/acc))
 (register
 (df-description
 :name
 (agent-identifier
 :name oa@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :services (set
 (service-description
 :name Serv_Name1
 :type fipa-oa
 :ontology (set FIPA-Ontol-Service-Ontology)
 :properties (set
 (property
 :name supported-ontologies
 :value (set
 (ontology-description
 :ontology-name FIPA-VPN-Provisioning
 :version "1.0"
 :source-languages (set XML)
 :domains (set Telecomms))
 (ontology-description
 :ontology-name Product
 :source-languages (set KIF)
 :domains (set Commerce))))))
 (service-description
 :name Serv_Name2
 :type translation-service
 :ontology (set FIPA-Ontol-Service-Ontology)
 :properties (set
 (property
 :name ontology-translation-types
 :value (set
 (translation-description
 :from FIPA-VPN-Provisioning
 :to Product
 :level Weakly-Translatable)
 (translation-description
 :from Product
 :to Italian-Product
 :level Strongly-Translatable)))
 (property
 :name language-translation-types
 :value (set
 (translation-description
 :from FIPA-SL
 :to KIF
 :level Weakly-Translatable)
 (translation-description

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 14

 :from OntoLingua
 :to LOOM
 :level Strongly-Translatable)))))
 :protocol FIPA-Request
 :ontology FIPA-Ontol-Service-Ontology))))

3.4.1 Querying the DF

The search action (see [FIPA00023] enables an agent to query the DF for available ontology related services, namely:

• the list of registered OAs,

• the list of OAs that support ontologies in a given domain,

• the basic properties of a given ontology (for example, domain, source-language), and,

• the list of OAs that provide a specific translation service.

It is also possible for an agent to query a DF to establish what agents claim to understand a given ontology. The reply
could be a list of OA who offer such an ontology, the requesting agent can then use it intelligence to decide which
ontology service is wishes to use.

For example, the following example describes the case where an agent (the pca-agent in the example) queries a DF to
establish what OA agents can support the FIPA-VPN-Provisioning ontology:

(request
 :sender
 (agent-identifier
 :name pca-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name df@bar.com
 :addresses (sequence iiop://bar.com/acc)))
 :language FIPA-SL0
 :protocol FIPA-Request
 :ontology FIPA-Agent-Management
 :reply-with search-123
 :content
 (action
 (agent-identifier
 :name df@bar.com
 :addresses (sequence iiop://bar.com/acc))
 (search
 (df-agent-description
 :services (set
 (service-description
 :type fipa-oa
 :ontology (set FIPA-Ontol-Service-Ontology)
 :properties (set
 (property
 :name supported-ontologies
 :value (set
 (ontology-description
 :ontology-name FIPA-VPN-Provisioning)))))))))

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 15

The DF responds listing the details of the appropriate OAs registered:

(inform
 :sender
 (agent-identifier
 :name df@bar.com
 :addresses (sequence iiop://bar.com/acc))
 :receiver (set
 (agent-identifier
 :name pca-agent@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :language FIPA-SL0
 :protocol FIPA-Request
 :ontology FIPA-Agent-Management
 :in-reply-to search-123
 :content
 (result
 (action
 (agent-identifier
 :name df@bar.com
 :addresses (sequence iiop://bar.com/acc))
 (search
 (df-agent-description
 :name
 (agent-identifier
 :name oa@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :type fipa-oa
 :services (set
 (service-description
 :name Serv_Name1
 :type fipa-oa
 :ontology (set FIPA-Ontol-Service-Ontology)
 :properties (set
 (property
 :name supported-ontologies
 :value (set
 (ontology-description
 :ontology-name FIPA-VPN-Provisioning
 :source-languages (set XML)
 :domains (set Telecoms))
 (ontology-description
 :ontology-name product
 :source-languages (set KIF)
 :domains (set Commerce))))))
 (service-description
 :type translation-service
 :ontology (set FIPA-Ontol-Service-Ontology)
 :name Serv_Name2
 :properties (set
 (property
 :name ontology-translation-types
 :value (set
 (translation-description
 :from FIPA-VPN-Provisioning
 :to Product

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 16

 :level Weakly-Translatable)
 (translation-description
 :from Product
 :to Italian-Product
 :level Strongly-Translatable)))
 (property
 :name language-translation-types
 :value (set
 (translation description
 :from FIPA-SL
 :to KIF
 :level Weakly-Translatable)
 (translation-description
 :from Ontolingua
 :to LOOM
 :level Strongly-Translatable))))))
 :protocol FIPA-Request)
 :ontology FIPA-Ontol-Service-Ontology)))))

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 17

4 Ontology Service Ontology

4.1 Object Descriptions
This section describes a set of frames, that represent the classes of objects in the domain of discourse within the
framework of the FIPA-Ontol-Service-Ontology ontology.

The following terms are used to describe the objects of the domain:

• Frame. This is the mandatory name of this entity, that must be used to represent each instance of this class.

• Ontology. This is the name of the ontology, whose domain of discourse includes the parameters described in the

table.

• Parameter. This is the mandatory name of a parameter of this frame.

• Description. This is a natural language description of the semantics of each parameter.

• Presence. This indicates whether each parameter is mandatory or optional.

• Type. This is the type of the values of the parameter: Integer, Word, String, URL, Term, Set or Sequence.

• Reserved Values. This is a list of FIPA-defined constants that can assume values for this parameter.

4.1.1 Ontology Description

Frame
Ontology

ontology-description
FIPA-Ontol-Service-Ontology

Parameter Description Presence Type Reserved Values
ontology-
name

The symbolic name of the ontology. Mandatory Word

version The version of the ontology. String
source-
languages

A list of languages in which the
ontology is represented,

Mandatory Set of String

domains A list of application domains in which
the ontology is applicable.

Mandatory Set of String

4.1.2 Translation Description

Frame
Ontology

translation-description
FIPA-Ontol-Service-Ontology

Parameter Description Presence Type Reserved Values
from The representation of the source

ontology or language.
Mandatory Word

to The representation of the destination
ontology or language.

Mandatory Word

level The translation relationship between
the source and destination ontologies
or languages.

Mandatory String Equivalent
Weakly-Translatable
Strongly-Translatable
Approx-Translatable

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 18

5 Meta Ontology
One of the goals of this specification is to allow agents to talk about and manipulate knowledge, for instance to query for
the definition of a concept or to define a new concept. A standard meta-ontology and knowledge model is necessary for
this purpose, which describes the primitives used by a knowledge representation language, like concepts, parameters,
relations, etc.

FIPA adopts for its specification the knowledge model of [OKBC], which is hereafter defined and referred with the reserved
constant FIPA-Meta-Ontology. The adopted knowledge model supports an object-oriented representation of
knowledge and provides a set of representational constructs commonly found in object-oriented knowledge representation
systems.

It must be noticed that the adoption of this meta-ontology does not prevent the usage of whatever knowledge
representation language a designer wants to use. Instead, for a FIPA-compliant agent, this is mandated and serves the
purpose of the interlingua for knowledge that is being communicated, that is knowledge obtained from or provided to an
OA must be expressed in this knowledge model. It is left to agents, then, the responsibility to translate knowledge from
the actual knowledge representation language into and out of this interlingua, as needed.

For an accurate understanding of this knowledge model, the reader should directly refer to [OKBC]. However, for quick
reference and to simplify the reading of this document, the following section is an integral reproduction of Chapter 2 of
[OKBC].

5.1 The OKBC Knowledge Model
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.1p1 release (March 2nd, 1998)
 originally by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
 * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
 * with significant contributions from:
 Jens Lippmann, Marek Rouchal, Martin Wilck and others
-->

The Open Knowledge Base Connectivity provides operations for manipulating knowledge expressed in an implicit
representation formalism called the OKBC Knowledge Model, which we specify in this chapter. The OKBC Knowledge
Model supports an object-oriented representation of knowledge and provides a set of representational constructs
commonly found in object-oriented knowledge representation systems (KRSs) [4]. Knowledge obtained from an KRS
using OKBC or provided to an KRS using OKBC is assumed in the specification of the OKBC operations to be expressed
in the Knowledge Model. The OKBC Knowledge Model therefore serves as an implicit interlingua for knowledge that is
being communicated using OKBC, and systems that use OKBC translate knowledge into and out of that interlingua as
needed.

The OKBC Knowledge Model includes constants, frames, slots, facets, classes, individuals, and knowledge bases. We
describe each of these constructs in the sections below. To provide a precise and succinct description of the OKBC
Knowledge Model, we use the Knowledge Interchange Format (KIF) [2] as a formal specification language. KIF is a first-
order predicate logic language with set theory, and has a linear prefix syntax.

Constants

The OKBC Knowledge Model assumes a universe of discourse consisting of all entities about which knowledge is to be
expressed. Each OKBC knowledge base may have a different universe of discourse. However, OKBC assumes that the
universe of discourse always includes all constants of the following basic types:

• integers,

• floating point numbers,

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 19

• strings,

• symbols,

• lists, and,

• classes.

Classes are sets of entities5, and all sets of entities are considered to be classes. OKBC also assumes that the domain
of discourse includes the logical constants true and false.

Frames, Own Slots, and Own Facets

A frame is a primitive object that represents an entity in the domain of discourse. Formally, a frame corresponds to a KIF
constant. A frame that represents a class is called a class frame, and a frame that represents an individual is called an
individual frame.

A frame has associated with it a set of own slots, and each own slot of a frame has associated with it a set of entities
called slot values. Formally, a slot is a binary relation, and each value V of an own slot S of a frame F represents the
assertion that the relation S holds for the entity represented by F and the entity represented by V (i.e., (S F V)6). For
example, the assertion that Fred's favorite foods are potato chips and ice cream could be represented by the own slot
Favorite-Food of the frame Fred having as values the frame Potato-Chips and the string "ice cream".

An own slot of a frame has associated with it a set of own facets, and each own facet of a slot of a frame has associated
with it a set of entities called facet values. Formally, a facet is a ternary relation, and each value V of own facet Fa of slot
S of frame Fr represents the assertion that the relation Fa holds for the relation S, the entity represented by Fr, and the
entity represented by V (i.e., (Fa S Fr V)). For example, the assertion that the favorite foods of Fred must be edible
foods could be represented by the facet :VALUE-TYPE of the Favorite-Food slot of the Fred frame having the value
Edible-Food.

Relations may optionally be entities in the domain of discourse and therefore representable by frames. Thus, a slot or a
facet may be represented by a frame. Such a frame describes the properties of the relation represented by the slot or
facet. A frame representing a slot is called a slot frame, and a frame representing a facet is called a facet frame.

Classes and Individuals

A class is a set of entities. Each of the entities in a class is said to be an instance of the class. An entity can be an
instance of multiple classes, which are called its types. A class can be an instance of a class. A class which has
instances that are themselves classes is called a meta-class.

Entities that are not classes are referred to as individuals. Thus, the domain of discourse consists of individuals and
classes. The unary relation class is true if and only if its argument is a class and the unary relation individual is true
if and only if its argument is an individual. The following axiom holds:7

 (<=> (class ?X) (not (individual ?X)))

The class membership relation (called instance-of) that holds between an instance and a class is a binary relation that
maps entities to classes. A class is considered to be a unary relation that is true for each instance of the class. That is:8

 (<=> (holds ?C ?I) (instance-of ?I ?C))

5 We use the term class synonymously with the term concept as used in the description logic community.
6 KIF syntax note: Relational sentences in KIF have the form (<relation name> <argument>*)
7 Notes on KIF syntax: Names whose first character is ? are variables. If no explicit quantifier is specified, variables are assumed to be
universally quantified. <=> means "if and only if".
8 Note on KIF syntax: holds means "relation is true for". One must use the form (holds ?C ?I) rather than (?C ?I) when the relation is a
variable because KIF has a first-order logic syntax and therefore does not allow a variable in the first position of a relational sentence.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 20

The relation type-of is defined as the inverse of relation instance-of. That is:

 (<=> (type-of ?C ?I) (instance-of ?I ?C))

The subclass-of relation for classes is defined in terms of the relation instance-of, as follows. A class Csub is a
subclass of class Csuper if and only if all instances of Csub are also instances of Csuper. That is9:

 (<=> (subclass-of ?Csub ?Csuper)
 (forall ?I (=> (instance-of ?I ?Csub)
 (instance-of ?I ?Csuper))))

Note that this definition implies that subclass-of is transitive. (I.e., If A is a subclass of B and B is a subclass of C,
then A is a subclass of C.)

The relation superclass-of is defined as the inverse of the relation subclass-of. That is:

 (<=> (superclass-of ?Csuper ?Csub) (subclass-of ?Csub ?Csuper))

Class Frames, Template Slots and Template Facets

A class frame has associated with it a collection of template slots that describe own slot values considered to hold for
each instance of the class represented by the frame. The values of template slots are said to inherit to the subclasses
and to the instances of a class. Formally, each value V of a template slot S of a class frame C represents the assertion
that the relation template-slot-value holds for the relation S, the class represented by C, and the entity represented by V
(i.e., (template-slot-value S C V)). That assertion, in turn, implies that the relation S holds between each
instance I of class C and value V (i.e., (S I V)). It also implies that the relation template-slot-value holds for the
relation S, each subclass Csub of class C, and the entity represented by V (i.e., (template-slot-value S Csub
V)). That is, the following slot value inheritance axiom holds for the relation template-slot-value:

 (=> (template-slot-value ?S ?C ?V)
 (and (=> (instance-of ?I ?C) (holds ?S ?I ?V))
 (=> (subclass-of ?Csub ?C)
 (template-slot-value ?S ?Csub ?V))))

Thus, the values of a template slot are inherited to subclasses as values of the same template slot and to instances as
values of the corresponding own slot. For example, the assertion that the gender of all female persons is female could be
represented by template slot Gender of class frame Female-Person having the value Female. Then, if we created an
instance of Female-Person called Mary, Female would be a value of the own slot Gender of Mary.

A template slot of a class frame has associated with it a collection of template facets that describe own facet values
considered to hold for the corresponding own slot of each instance of the class represented by the class frame. As with
the values of template slots, the values of template facets are said to inherit to the subclasses and instances of a class.

Formally, each value V of a template facet F of a template slot S of a class frame C represents the assertion that the
relation template-facet-value holds for the relations F and S, the class represented by C, and the entity represented by V
(i.e., (template-facet-value F S C V)). That assertion, in turn, implies that the relation F holds for relation S,
each instance I of class C, and value V (i.e., (F S I V)). It also implies that the relation template-facet-value
holds for the relations S and F, each subclass Csub of class C, and the entity represented by V (i.e., (template-
facet-value F S Csub V)).

In general, the following facet value inheritance axiom holds for the relation template-facet-value:

9 Note on KIF syntax: => means "implies".

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 21

 (=> (template-facet-value ?F ?S ?C ?V)
 (and (=> (instance-of ?I ?C) (holds ?F ?S ?I ?V))
 (=> (subclass-of ?Csub ?C)
 (template-facet-value ?F ?S ?Csub ?V))))

Thus, the values of a template facet are inherited to subclasses as values of the same template facet and to instances as
values of the corresponding own facet.

Note that template slot values and template facet values necessarily inherit from a class to its subclasses and instances.
Default values and default inheritance are specified separately.

Primitive and Non-Primitive Classes

Classes are considered to be either primitive or non-primitive by OKBC. The template slot values and template facet
values associated with a non-primitive class are considered to specify a set of necessary and sufficient conditions for
being an instance of the class. For example, the class Triangle could be a non-primitive class whose template slots
and facets specify three-sided polygons. All triangles are necessarily three-sided polygons, and knowing that an entity is
a three-sided polygon is sufficient to conclude that the entity is a triangle.

The template slot values and template facet values associated with a primitive class are considered to specify only a set
of necessary conditions for an instance of the class. For example, all classes of "natural kinds" - such as Horse and
Building - are primitive concepts. A KB may specify many properties of horses and buildings, but will typically not
contain sufficient conditions for concluding that an entity is a horse or building.
Formally:

 (=> (and (class ?C) (not (primitive ?C)))
 (=> (and (=> (template-slot-value ?S ?C ?V) (holds ?S ?I ?V))
 (=> (template-facet-value ?F ?S ?C ?V)
 (holds ?F ?S ?I ?V)))
 (instance-of ?I ?C)))

Associating Slots and Facets with Frames

Each frame has associated with it a collection of slots, and each frame-slot pair has associated with it a collection of
facets. A facet is considered to be associated with a frame-slot pair if the facet has a value for the slot at the frame. A slot
is considered to be associated with a frame if the slot has a value at that frame or there is a facet that is associated with
the slot at the frame. For example, if the template facet :NUMERIC-MINIMUM of template slot Age of frame Person had
a value 0, then facet :NUMERIC-MINIMUM would be associated with the frame Person slot Age pair and the slot Age
would be associated with the frame Person. In addition, OKBC contains operations for explicitly associating slots with
frames and associating facets with frame-slot pairs, even though there are no values for the slots or facets at the frame.

We formalize the association of slots with frames and facets with frame-slot pairs by defining the relations slot-of,
template-slot-of, facet-of, and template-facet-of as follows:

 (=> (exists ?V (holds ?Fa ?S ?F ?V)) (facet-of ?Fa ?S ?F))

 (=> (exists ?V (template-facet-value ?Fa ?S ?C ?V))
 (template-facet-of ?Fa ?S ?C))

 (=> (or (exists ?V (holds ?S ?F ?V))
 (exists ?Fa (facet-of ?Fa ?S ?F)))
 (slot-of ?S ?F))

 (=> (or (exists ?V (template-slot-value ?S ?C ?V))
 (exists ?Fa (template-facet-of ?Fa ?S ?C)))
 (template-slot-of ?S ?C))

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 22

So, in the example given above, the following sentences would be true: (template-slot-of Age Person) and
(template-facet-of :NUMERIC-MINIMUM Age Person).

As with template facet values and template slot values, the template-slot-of and template-facet-of relations
inherit from a class to its subclasses and from a class to its instances as the slot-of and facet-of relations. That is,
the following slot-of inheritance axioms hold.

 (=> (template-slot-of ?S ?C)
 (and (=> (instance-of ?I ?C) (slot-of ?S ?I))
 (=> (subclass-of ?Csub ?C) (template-slot-of ?S ?Csub))))

 (=> (template-facet-of ?Fa ?S ?C)
 (and (=> (instance-of ?I ?C) (facet-of ?Fa ?S ?I))
 (=> (subclass-of ?Csub ?C)
 (template-facet-of ?Fa ?S ?Csub))))

Collection Types for Slot and Facet Values

OKBC allows multiple values of a slot or facet to be interpreted as a collection type other than a set. The protocol
recognizes three collection types: set, bag, and list. A bag is an unordered collection with possibly multiple occurrences
of the same value in the collection. A list is an ordered bag.

The OKBC Knowledge Model considers multiple slot and facet values to be sets throughout because of the lack of a
suitable formal interpretation for (1) multiple slot or facet values treated as bags or lists, (2) the ordering of values in lists of
values that result from multiple inheritance, and (3) the multiple occurrence of values in bags that result from multiple
inheritance. In addition, the protocol itself makes no commitment as to how values expressed in collection types other
than set are combined during inheritance. Thus, OKBC guarantees that multiple slot and facet values of a frame stored
as a bag or a list are retrievable as an equivalent bag or list at that frame. However, when the values are inherited to a
subclass or instance, no guarantees are provided regarding the ordering of values for lists or the repeating of multiple
occurrences of values for bags. The collection types supported by a KRS can be specified by a behavior and the
collection type of a slot of a specific frame can be specified by using the :COLLECTION-TYPE facet.

Default Values

The OKBC knowledge model includes a simple provision for default values for slots and facets. Template slots and
template facets have a set of default values associated with them. Intuitively, these default values inherit to instances
unless the inherited values are logically inconsistent with other assertions in the KB, the values have been removed at the
instance, or the default values have been explicitly overridden by other default values. OKBC does not require a KRS to be
able to determine the logical consistency of a KB, nor does it provide a means of explicitly overriding default values.
Instead, OKBC leaves the inheritance of default values unspecified. That is, no requirements are imposed on the
relationship between default values of template slots and facets and the values of the corresponding own slots and facets.
The default values on a template slot or template facet are simply available to the KRS to use in whatever way it chooses
when determining the values of own slots and facets. OKBC guarantees that, unless the value of the :default behaviour
is :none, default values for a template slot or template facet asserted at a class frame will be retrievable at that frame.
However, no guarantees are made as to how or whether the default values are inherited to a subclass or instance.

Knowledge Bases

A knowledge base (KB) is a collection of classes, individuals, frames, slots, slot values, facets, facet values, frame-slot
associations, and frame-slot-facet associations. KBs are considered to be entities in the universe of discourse and are
represented by frames. All frames reside in some KB. The frames representing KBs are considered to reside in a
distinguished KB called the meta-kb, which is accessible to OKBC applications.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 23

Standard Classes, Facets, and Slots

The OKBC Knowledge Model includes a collection of classes, facets, and slots with specified names and semantics. It is
not required that any of these standard classes, facets, or slots be represented in any given KB, but if they are, they must
satisfy the semantics specified here.

The purpose of these standard names is to allow for KRS- and KB-independent canonical names for frequently used
classes, facets, and slots. The canonical names are needed because an application cannot in general embed literal
references to frames in a KB and still be portable. This mechanism enables such literal references to be used without
compromising portability.

Classes

Whether the classes described in this section are actually present in a KB or not, OKBC guarantees that all of these
class names are valid values for the :VALUE-TYPE facet.

:THING class
:THING is the root of the class hierarchy for a KB, meaning that :THING is the superclass of every class in every KB.

:CLASS class
:CLASS is the class of all classes. That is, every entity that is a class is an instance of :CLASS.

:INDIVIDUAL class
:INDIVIDUAL is the class of all entities that are not classes. That is, every entity that is not a class is an instance of
:INDIVIDUAL.

:NUMBER class
:NUMBER is the class of all numbers. OKBC makes no guarantees about the precision of numbers. If precision is an
issue for an application, then the application is responsible for maintaining and validating the format of numerical values of
slots and facets. :NUMBER is a subclass of :INDIVIDUAL.

:INTEGER class
:INTEGER is the class of all integers and is a subclass of :NUMBER. As with numbers in general, OKBC makes no
guarantees about the precision of integers.

:STRING class
:STRING is the class of all text strings. :STRING is a subclass of :INDIVIDUAL.

:SYMBOL class
:SYMBOL is the class of all symbols. :SYMBOL is a subclass of :SEXPR.

:LIST class
:LIST is the class of all lists. :LIST is a subclass of :INDIVIDUAL.

Facets

The standard facet names in OKBC have been derived from the Knowledge Representation System Specification (KRSS)
[6] and the Ontolingua Frame Ontology. KRSS is a common denominator for description logic systems such as LOOM[5],
CLASSIC [1], and BACK [7]. The Ontolingua Frame Ontology defines a frame language as an extension to KIF. KIF plus
the Ontolingua Frame Ontology is the representation language used in Stanford University's Ontolingua System [3]. Both
KRSS and Ontolingua were developed as part of DARPA's Knowledge Sharing Effort.

:VALUE-TYPE facet
The :VALUE-TYPE facet specifies a type restriction on the values of a slot of a frame. Each value of the :VALUE-TYPE

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 24

facet denotes a class. A value C for facet :VALUE-TYPE of slot S of frame F means that every value of slot S of frame F
must be an instance of the class C. That is:

 (=> (:VALUE-TYPE ?S ?F ?C)
 (and (class ?C)
 (=> (holds ?S ?F ?V) (instance-of ?V ?C))))

 (=> (template-facet-value :VALUE-TYPE ?S ?F ?C)
 (and (class ?C)
 (=> (template-slot-value ?S ?F ?V) (instance-of ?V ?C))))

The first axiom provides the semantics of the :VALUE-TYPE facet for own slots and the second provides the semantics
for template slots. Note that if the :VALUE-TYPE facet has multiple values for a slot S of a frame F, then the values of
slot S of frame F must be an instance of every class denoted by the values of :VALUE-TYPE.

A value for :VALUE-TYPE can be a KIF term of the following form:

 <value-type-expr> ::= (union <OKBC-class>*) | (set-of <OKBC-value>*) |
 OKBC-class

A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class described in
Section 2.10.1. A OKBC-value is any entity. The union expression allows the specification of a disjunction of classes
(e.g., either a dog or a cat), and the set-of expression allows the specification of an explicitly enumerated set of
possible values for the slot (e.g., either Clyde, Fred, or Robert).

:INVERSE facet
The :INVERSE facet of a slot of a frame specifies inverses for that slot for the values of the slot of the frame. Each value
of this facet is a slot. A value S2 for facet :INVERSE of slot S1 of frame F means that if V is a value of S1 of F, then F is
a value of S2 of V. That is:

 (=> (:INVERSE ?S1 ?F ?S2)
 (and (:SLOT ?S2)
 (=> (holds ?S1 ?F ?V) (holds ?S2 ?V ?F))))

 (=> (template-facet-value :INVERSE ?S1 ?F ?S2)
 (and (:SLOT ?S2)
 (=> (template-slot-value ?S1 ?F ?V)
 (template-slot-value ?S2 ?V ?F))))

:CARDINALITY facet
The :CARDINALITY facet specifies the exact number of values that may be asserted for a slot on a frame. The value of
this facet must be a nonnegative integer. A value N for facet :CARDINALITY on slot S on frame F means that slot S on
frame F has N values. That is10:

 (=> (:CARDINALITY ?S ?F ?N)
 (= (cardinality (setofall ?V (holds ?S ?F ?V))) ?N))

 (=> (template-facet-value :CARDINALITY ?S ?F ?C)
 (=< (cardinality (setofall ?V (template-slot-value ?S ?F ?V))
 ?N)))

10 cardinality is a unary function whose argument is a finite set and whose value is the number of elements in the set. setofall is a set-
valued term expression in KIF that takes a variable as a first argument and a sentence containing that variable as a second argument. The value
of setofall is the set of all values of the variable for which the sentence is true. Note on KIF syntax: =< means "less than or equal".

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 25

For example, one could represent the assertion that Fred has exactly four brothers by asserting 4 as the value of the
:CARDINALITY own facet of the Brother own slot of frame Fred. Note that all the values for slot S of frame F need not
be known in the KB. That is, a KB could use the :CARDINALITY facet to specify that Fred has 4 brothers without
knowing who the brothers are and therefore without providing values for Fred's Brother slot.

Also, note that a value for :CARDINALITY as a template facet of a template slot of a class only constrains the maximum
number of values of that template slot of that class, since the corresponding own slot of each instance of the class may
inherit values from multiple classes and have locally asserted values.

:MAXIMUM-CARDINALITY facet
The :MAXIMUM-CARDINALITY facet specifies the maximum number of values that may be asserted for a slot of a frame.
Each value of this facet must be a nonnegative integer. A value N for facet MAXIMUM-CARDINALITY of slot S of frame F
means that slot S of frame F can have at most N values. That is:

 (=> (:MAXIMUM-CARDINALITY ?S ?F ?N)
 (=< (cardinality (setofall ?V (holds ?S ?F ?V))) ?N))

 (=> (template-facet-value :MAXIMUM-CARDINALITY ?S ?F ?C)
 (=< (cardinality (setofall ?V (template-slot-value ?S ?F ?V))
 ?N)))

Note that if facet :MAXIMUM-CARDINALITY of a slot S of a frame F has multiple values N1,…,Nk, then S in F can have
at most (min N1 … Nk) values. Also, it is appropriate for a value for :MAXIMUM-CARDINALITY as a template facet of
a template slot of a class to constrain the number of values of that template slot of that class as well as the number of
values of the corresponding own slot of each instance of that class since an excess of values for a template slot of a
class will cause an excess of values for the corresponding own slot of each instance of the class.

:MINIMUM-CARDINALITY facet
The :MINIMUM-CARDINALITY facet specifies the minimum number of values that may be asserted for a slot of a frame.
Each value of this facet must be a nonnegative integer. A value N for facet MINIMUM-CARDINALITY of slot S of frame F
means that slot S of frame F has at least N values. That is11:

 (=> (:MINIMUM-CARDINALITY ?S ?F ?N)
 (>= (cardinality (setofall ?V (holds ?S ?F ?V))) ?N))

Note that if facet :MINIMUM-CARDINALITY of a slot S of a frame F has multiple values N1,…,Nk, then S of F has at
least (max N1 … Nk) values. Also, as is the case with the :CARDINALITY facet, all the values for slot S of frame F do
not need be known in the KB.

Note that a value for :MINIMUM-CARDINALITY as a template facet of a template slot of a class does not constrain the
number of values of that template slot of that class, since the corresponding own slot of each instance of the class may
inherit values from multiple classes and have locally asserted values. Instead, the value for the template facet :MINIMUM-
CARDINALITY constrains only the number of values of the corresponding own slot of each instance of that class, as
specified by the axiom.

:SAME-VALUES facet
The :SAME-VALUES facet specifies that a slot of a frame has the same values as other slots of that frame or as the
values specified by slot chains starting at that frame. Each value of this facet is either a slot or a slot chain. A value S2 for
facet :SAME-VALUES of slot S1 of frame F, where S2 is a slot, means that the set of values of slot S1 of F is equal to the
set of values of slot S2 of F. That is:

 (=> (:SAME-VALUES ?S1 ?F ?S2)
 (= (setofall ?V (holds ?S1 ?F ?V))

11 Note on KIF synatx: >= means "greater than or equal".

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 26

 (setofall ?V (holds ?S2 ?F ?V))))

A slot chain is a list of slots that specifies a nesting of slots. That is, the values of the slot chain S1, … ,Sn of frame F are
the values of the Sn slot of the values of the Sn-1 slot of … of the values of the S1 slot in F. For example, the values of the
slot chain (parent brother) of Fred are the brothers of the parents of Fred. Formally, we define the values of a slot
chain recursively as follows: Vn is a value of slot chain S1,…,Sn of frame F if there is a value V1 of slot S1 of F such that
Vn is a value of slot chain S2,…,Sn of frame V1. That is12:

 (<=> (slot-chain-value (listof ?S1 ?S2 @Sn) ?F ?Vn)
 (exists ?V1 (and (holds ?S1 ?F ?V1)
 (slot-chain-value (listof ?S2 @Sn) ?V1 ?Vn))))

 (<=> (slot-chain-value (listof ?S) ?F ?V) (holds ?S ?F ?V))

A value (S1 … Sn) for facet :SAME-VALUES of slot S of frame F means that the set of values of slot S of F is equal to
the set of values of slot chain (S1 … Sn) of F. That is,

 (=> (:SAME-VALUES ?S ?F (listof @Sn))
 (= (setofall ?V (holds ?S ?F ?V))
 (setofall ?V (slot-chain-value (listof @Sn) ?F ?V))))

For example, one could assert that a person's uncles are the brothers of their parents by putting the value (parent
brother) on the template facet :SAME-VALUES of the Uncle slot of class Person.

:NOT-SAME-VALUES facet
The :NOT-SAME-VALUES facet specifies that a slot of a frame does not have the same values as other slots of that
frame or as the values specified by slot chains starting at that frame. Each value of this facet is either a slot or a slot
chain. A value S2 for facet :NOT-SAME-VALUES of slot S1 of frame F, where S2 is a slot, means that the set of values of
slot S1 of F is not equal to the set of values of slot S2 of F. That is:

 (=> (:NOT-SAME-VALUES ?S1 ?F ?S2)
 (not (= (setofall ?V (holds ?S1 ?F ?V))
 (setofall ?V (holds ?S2 ?F ?V)))))

A value (S1 … Sn) for facet :NOT-SAME-VALUES of slot S of frame F means that the set of values of slot S of F is not
equal to the set of values of slot chain (S1 … Sn) of F. That is:

 (=> (:NOT-SAME-VALUES ?S ?F (listof @Sn))
 (not (= (setofall ?V (holds ?S ?F ?V))
 (setofall ?V (slot-chain-value (listof @Sn) ?F ?V)))))

:SUBSET-OF-VALUES facet
The :SUBSET-OF-VALUES facet specifies that the values of a slot of a frame are a subset of the values of other slots of
that frame or of the values of slot chains starting at that frame. Each value of this facet is either a slot or a slot chain. A
value S2 for facet :SUBSET-OF-VALUES of slot S1 of frame F, where S2 is a slot, means that the set of values of slot S1
of F is a subset of the set of values of slot S2 of F. That is,

 (=> (:SUBSET-OF-VALUES ?S1 ?F ?S2)
 (subset (setofall ?V (holds ?S1 ?F ?V))
 (setofall ?V (holds ?S2 ?F ?V))))

12 Note on KIF syntax: listof is a function whose value is a list of its arguments. Names whose first character is @ are sequence variables that
bind to a sequence of 0 or more entities. For example, the expression (F @X) binds to (F 14 23) and in general to any list whose first
element is F.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 27

A value (S1 … Sn) for facet :SUBSET-OF-VALUES of slot S of frame F means that the set of values of slot S of F is a
subset of the set of values of the slot chain (S1 … Sn) of F. That is,

 (=> (:SUBSET-OF-VALUES ?S ?F (listof @Sn))
 (subset (setofall ?V (holds ?S ?F ?V))
 (setofall ?V (slot-chain-value (listof @Sn) ?F ?V))))

:NUMERIC-MINIMUM facet
The :NUMERIC-MINIMUM facet specifies a lower bound on the values of a slot whose values are numbers. Each value of
the :NUMERIC-MINIMUM facet is a number. This facet is defined as follows:

 (=> (:NUMERIC-MINIMUM ?S ?F ?N)
 (and (:NUMBER ?N)
 (=> (holds ?S ?F ?V) (>= ?V ?N))))

 (=> (template-facet-value :NUMERIC-MINIMUM ?S ?F ?N)
 (and (:NUMBER ?N)
 (=> (template-slot-value ?S ?F ?V) (>= ?V ?N))))

:NUMERIC-MAXIMUM facet
The :NUMERIC-MAXIMUM facet specifies an upper bound on the values of a slot whose values are numbers. Each value
of this facet is a number. This facet is defined as follows:

 (=> (:NUMERIC-MAXIMUM ?S ?F ?N)
 (and (:NUMBER ?N)
 (=> (holds ?S ?F ?V) (=< ?V ?N))))

 (=> (template-facet-value :NUMERIC-MAXIMUM ?S ?F ?N)
 (and (:NUMBER ?N)
 (=> (template-slot-value ?S ?F ?V) (=< ?V ?N))))

:SOME-VALUES facet
The :SOME-VALUES facet specifies a subset of the values of a slot of a frame. This facet of a slot of a frame can have
any value that can also be a value of the slot of the frame. A value V for own facet :SOME-VALUES of own slot S of frame
F means that V is also a value of own slot S of F. That is,

 (=> (:SOME-VALUES ?S ?F ?V) (holds ?S ?F ?V))

:COLLECTION-TYPE facet
The :COLLECTION-TYPE facet specifies whether multiple values of a slot are to be treated as a set, list, or bag. No
axiomatization is provided for treating multiple values as lists or bags because of the lack of a suitable formal
interpretation for the ordering of values in lists of values that result from multiple inheritance and the multiple occurrence of
values in bags that result from multiple inheritance.

The protocol itself makes no commitment as to how values expressed in collection types other than set are combined
during inheritance. Thus, OKBC guarantees that multiple slot and facet values stored at a frame as a bag or a list are
retrievable as an equivalent bag or list at that frame. However, when the values are inherited to a subclass or instance, no
guarantees are provided regarding the ordering of values for lists or the repeating of multiple occurrences of values for
bags.

:DOCUMENTATION-IN-FRAME facet
:DOCUMENTATION-IN-FRAME is a facet whose values at a slot for a frame are text strings providing documentation for
that slot on that frame. The only requirement on the :DOCUMENTATION facet is that its values be strings.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 28

Slots

:DOCUMENTATION slot
:DOCUMENTATION is a slot whose values at a frame are text strings providing documentation for that frame. Note that the
documentation describing a class would be values of the own slot :DOCUMENTATION on the class. The only requirement
on the :DOCUMENTATION slot is that its values be strings. That is,

 (=> (:DOCUMENTATION ?F ?S) (:STRING ?S))

Slots on Slot Frames

The slots described in this section can be associated with frames that represent slots. In general, these slots describe
properties of a slot which hold at any frame that can have a value for the slot.

:DOMAIN slot
:DOMAIN specifies the domain of the binary relation represented by a slot frame. Each value of the slot :DOMAIN
denotes a class. A slot frame S having a value C for own slot :DOMAIN means that every frame that has a value for own
slot S must be an instance of C, and every frame that has a value for template slot S must be C or a subclass of C. That
is:

 (=> (:DOMAIN ?S ?C)
 (and (:SLOT ?S)
 (class ?C)
 (=> (holds ?S ?F ?V) (instance-of ?F ?C))
 (=> (template-slot-value ?S ?F ?V)
 (or (= ?F ?C) (subclass-of ?F ?C))))

If a slot frame S has a value C for own slot :DOMAIN and I is an instance of C, then I is said to be in the domain of S.
A value for slot :DOMAIN can be a KIF expression of the following form:

 <domain-expr> ::= (union <OKBC-class>*) | OKBC-class

A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class.

Note that if slot :DOMAIN of a slot frame S has multiple values C1,…,Cn, then the domain of slot S is constrained to be
the intersection of classes C1,…,Cn. Every slot is considered to have :THING as a value of its :DOMAIN slot. That is,

 (=> (:SLOT ?S) (:DOMAIN ?S :THING))

:SLOT-VALUE-TYPE slot
:SLOT-VALUE-TYPE specifies the classes of which values of a slot must be an instance (i.e., the range of the binary
relation represented by a slot). Each value of the slot :SLOT-VALUE-TYPE denotes a class. A slot frame S having a
value V for own slot :SLOT-VALUE-TYPE means that the own facet :VALUE-TYPE has value V for slot S of any frame
that is in the domain of S. That is,

 (=> (:SLOT-VALUE-TYPE ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:VALUE-TYPE ?S ?F ?V))))

As is the case for the :VALUE-TYPE facet, the value for the :SLOT-VALUE-TYPE slot can be a KIF expression of the
following form:

 <value-type-expr> ::= (union <OKBC-class>*) | (set-of <OKBC-value>*) |
 OKBC-class

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 29

A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class described. A OKBC-
value is any entity. The union expression allows the specification of a disjunction of classes (e.g., either a dog or a
cat), and the set-of expression allows the specification of an explicitly enumerated set of values (e.g., either Clyde,
Fred, or Robert).

:SLOT-INVERSE slot
:SLOT-INVERSE specifies inverse relations for a slot. Each value of :SLOT-INVERSE is a slot. A slot frame S having a
value V for own slot :SLOT-INVERSE means that own facet :INVERSE has value V for slot S of any frame that is in the
domain of S. That is,

 (=> (:SLOT-INVERSE ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:INVERSE ?S ?F ?V))))

:SLOT-CARDINALITY slot
:SLOT-CARDINALITY specifies the exact number of values that may be asserted for a slot for entities in the slot's
domain. The value of slot :SLOT-CARDINALITY is a nonnegative integer. A slot frame S having a value V for own slot
:SLOT-CARDINALITY means that own facet :CARDINALITY has value V for slot S of any frame that is in the domain of
S. That is,

 (=> (:SLOT-CARDINALITY ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:CARDINALITY ?S ?F ?V))))

:SLOT-MAXIMUM-CARDINALITY slot
:SLOT-MAXIMUM-CARDINALITY specifies the maximum number of values that may be asserted for a slot for entities in
the slot's domain. The value of slot :SLOT-MAXIMUM-CARDINALITY is a nonnegative integer. A slot frame S having a
value V for own slot :SLOT-MAXIMUM-CARDINALITY means that own facet :MAXIMUM-CARDINALITY has value V for
slot S of any frame that is in the domain of S. That is,

 (=> (:SLOT-MAXIMUM-CARDINALITY ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:MAXIMUM-CARDINALITY ?S ?Csub ?V))))

:SLOT-MINIMUM-CARDINALITY slot
:SLOT-MINIMUM-CARDINALITY specifies the minimum number of values for a slot for entities in the slot's domain. The
value of slot :SLOT-MINIMUM-CARDINALITY is a nonnegative integer. A slot frame S having a value V for own slot
:SLOT-MINIMUM-CARDINALITY means that own facet :MINIMUM-CARDINALITY has value V for slot S of any frame
that is in the domain of S. That is,

 (=> (:SLOT-MINIMUM-CARDINALITY ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:MINIMUM-CARDINALITY ?S ?F ?V))))

:SLOT-SAME-VALUES slot
:SLOT-SAME-VALUES specifies that a slot has the same values as either other slots or as slot chains for entities in the
slot's domain. Each value of slot :SLOT-SAME-VALUES is either a slot or a slot chain. A slot frame S having a value V
for own slot :SLOT-SAME-VALUES means that own facet :SAME-VALUES has value V for slot S of any frame that is in
the domain of S. That is,

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 30

 (=> (:SLOT-SAME-VALUES ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:SAME-VALUES ?S ?F ?V)))

:SLOT-NOT-SAME-VALUES slot
:SLOT-NOT-SAME-VALUES specifies that a slot does not have the same values as either other slots or as slot chains
for entities in the slot's domain. Each value of slot :SLOT-NOT-SAME-VALUES is either a slot or a slot chain. A slot
frame S having a value V for own slot :SLOT-NOT-SAME-VALUES means that own facet :NOT-SAME-VALUES has value
V for slot S of any frame that is in the domain of S. That is,

 (=> (:SLOT-NOT-SAME-VALUES ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:NOT-SAME-VALUES ?S ?F ?V)))

:SLOT-SUBSET-OF-VALUES slot
:SLOT-SUBSET-OF-VALUES specifies that the values of a slot are a subset of either other slots or of slot chains for
entities in the slot's domain. Each value of slot :SLOT-SUBSET-OF-VALUES is either a slot or a slot chain. A slot frame
S having a value V for own slot :SLOT-SUBSET-OF-VALUES means that own facet :SUBSET-OF-VALUES has value V
for slot S of any frame that is in the domain of S. That is,

 (=> (:SLOT-SUBSET-OF-VALUES ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:SUBSET-OF-VALUES ?S ?F ?V)))

:SLOT-NUMERIC-MINIMUM slot
:SLOT-NUMERIC-MINIMUM specifies a lower bound on the values of a slot for entities in the slot's domain. Each value of
slot :SLOT-NUMERIC-MINIMUM is a number. A slot frame S having a value V for own slot :SLOT-NUMERIC-MINIMUM
means that own facet :NUMERIC-MINIMUM has value V for slot S of any frame that is in the domain of S. That is,

 (=> (:SLOT-NUMERIC-MINIMUM ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:NUMERIC-MINIMUM ?S ?F ?V)))

:SLOT-NUMERIC-MAXIMUM slot
:SLOT-NUMERIC-MAXIMUM specifies an upper bound on the values of a slot for entities in the slot's domain. Each value
of slot :SLOT-NUMERIC-MAXIMUM is a number. A slot frame S having a value V for own slot :SLOT-NUMERIC-
MAXIMUM means that own facet :NUMERIC-MAXIMUM has value V for slot S of any frame that is in the domain of S. That
is,

 (=> (:SLOT-NUMERIC-MAXIMUM ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:NUMERIC-MAXIMUM ?S ?F ?V)))

:SLOT-SOME-VALUES slot
:SLOT-SOME-VALUES specifies a subset of the values of a slot for entities in the slot's domain. Each value of slot
:SLOT-SOME-VALUES of a slot frame must be in the domain of the slot represented by the slot frame. A slot frame S
having a value V for own slot :SLOT-SOME-VALUES means that own facet :SOME-VALUES has value V for slot S of any
frame that is in the domain of S. That is,

 (=> (:SLOT-SOME-VALUES ?S ?V)

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 31

 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:SOME-VALUES ?S ?F ?V)))

:SLOT-COLLECTION-TYPE slot
:SLOT-COLLECTION-TYPE specifies whether multiple values of a slot are to be treated as a set, list, or bag. Slot
:SLOT-COLLECTION-TYPE has one value, which is either set, list or bag. A slot frame S having a value V for own
slot :SLOT-COLLECTION-TYPE means that own facet :COLLECTION-TYPE has value V for slot S of any frame that is
in the domain of S. That is,

 (=> (:SLOT-COLLECTION-TYPE ?S ?V)
 (and (:SLOT ?S)
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D)))
 (:COLLECTION-TYPE ?S ?F ?V)))

Bibliography

[1] Alexender Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperine Resnick.
CLASSIC: A Structural Data Model for Objects. In Proceedings of the 1989 ACM SIGMOD International Conference
on Management of Data, pages 58-67, Portland, OR, 1989.

[2] Michael R. Genesereth and Richard E. Fikes. Knowledge Interchange Format, Version 3.0 Reference Manual.
Technical Report Logic-92-1, Computer Science Department, Stanford University, 1992.

[3] Thomas R. Gruber. A translation approach to portable ontology specifications.
In R. Mizoguchi, editor, Proceedings of the Second Japanese Knowledge Acquisition for Knowledge-Based Systems
Workshop, Kobe, 1992. To appear in Knowledge Acquisition, June 1993.

[4] P.D. Karp. The Design Space of Frame Knowledge Representation Systems.
Technical Report 520, SRI International Artificial Intelligence Center, 1992.

[5] R. MacGregor. The Evolving Technology of Classification-based Knowledge Representation Systems.
In J. Sowa, editor, Principles of semantic networks, pages 385-400. Morgan Kaufmann Publishers, 1991.

[6] Peter F. Patel-Schneider and Bill Swartout. Description-Logic Knowledge Representation System Specification, from
the KRSS Group of the DARPA Knowledge Sharing Effort.
Technical report, November 1993.

[7] Christof Peltason, Albrecht Schmiedel, Carsten Kindermann, and Joachim Quantz. The BACK System Revisited.
Technical Report KIT - Report 75, Tecnische Universitat Berlin, September 1989.

About this document ...

Open Knowledge Base Connectivity 2.0.413
-- Proposed --
This document was generated using the LaTeX2HTML translator Version 98.1p1 release (March 2nd, 1998)
Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
The command line arguments were:
latex2html -address -split 2 km.tex.
The translation was initiated by Vinay K. Chaudhri on 1998-11-24

13 The Open Knowledge Base Connectivity protocol is a result of the joint work between the Artificial Intelligence Center of SRI International and
the Knowledge Systems Laboratory of Stanford University. At Stanford University, this work was supported by the Department of Navy
contracts titled Technology for Developing Network-based Information Brokers (Contract Number N66001-96-C-8622-P00004) and Large-Scale
Repositories of Highly Expressive Reusable Knowledge (Contract Number N66001-97-C-8554). At SRI International, it was supported by a Rome
Laboratory contract titled Reusable Tools for Knowledge Base and Ontology Development (Contract Number F30602-96-C-0332), a DARPA
contract entitled Ontology Construction Toolkit, and NIH Grant R29-LM-05413-01A1.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 32

5.1.1 Symbols

The following is the normative list of predicates and constants that compose the FIPA-Meta-Ontology and that must
be used by a FIPA agent when talking about and manipulating ontologies. It is here reported as a quick reference for the
programmer of this specification.

5.1.1.1 Predicates
Standard Predicates Informal Description

(<classname> ?class) Is true if and only if ?class is an instance of the class
<classname>

(<facetname> ?class ?slot ?value) Is true if and only if value is the value of the facet
<facetname> of the slot slot of the class class

(<slotname> ?class ?value) Is true if and only if value is the value of the slot
<slotname> of the class class

(CLASS ?X) Is true if and only if its argument X is a class
(FACET ?X) Is true if and only if its argument X is a facet
(FACET-OF ?facet ?slot ?frame) Is true if and only if the argument facet is a facet of the slot

slot of the frame frame
(FRAME-SENTENCE ?frame ?predicate) Is true if and only if the predicate ?predicate is asserted

within the frame ?frame
(INDIVIDUAL ?X) Is true if and only if its argument X is an individual
(INSTANCE-OF ?I ?C) Predicate expressing the instance relation between an

instance I and a class C it belongs to.
(PRIMITIVE ?x) Is true if and only if its argument X is a primitive class.
(SLOT ?X) Is true if and only if its argument X is a slot
(SLOT-OF ?slot ?frame) Is true if and only if the argument slot is a slot of the frame

frame
(SUBCLASS-OF ?Csub ?Csuper) Is true if and only if all instances of the class Csub are also

instances of Csuper
(SUPERCLASS-OF ?Csuper ?Csub) Is true if and only if all instances of the class Csub are also

instances of Csuper. It is the inverse of the relation
SUBCLASS-OF

(TEMPLATE-FACET-OF ?facet ?slot
 ?frame)

Is true if and only if the argument facet is a template facet of
the slot slot of the frame frame

(TEMPLATE-FACET-VALUE ?facet ?slot
 ?frame ?value)

Is true if and only if the argument value is the value of the
facet facet of the slot slot of the frame frame

(TEMPLATE-SLOT-OF ?slot ?frame) Is true if and only if the argument slot is a template slot of
the frame frame

(TEMPLATE-SLOT-VALUE ?slot ?frame
 ?value)

Is true if and only if the argument value is the value of the
slot slot of the frame frame

(TYPE-OF ?C ?I) Predicate expressing the instance relation between an
instance I and a class C it belongs to. It is the inverse of the
relation INSTANCE-OF

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 33

5.1.1.2 List of Standard Classes
:THING
:CLASS
:INDIVIDUAL
:NUMBER
:INTEGER
:STRING
:SYMBOL
:LIST

5.1.1.3 Standard Facets
:VALUE-TYPE
:INVERSE
:CARDINALITY
:MAXIMUM-CARDINALITY
:MINIMUM-CARDINALITY
:SAME-VALUES
:NOT-SAME-VALUES
:SUBSET-OF-VALUES
:NUMERIC-MAXIMUM
:NUMERIC-MINIMUM
:SOME-VALUES
:COLLECTION-TYPE
:DOCUMENTATION-IN-FRAME

5.1.1.4 Standard Slots
:DOCUMENTATION

5.1.1.5 Standard Slots on Slot Frames
:DOMAIN
:SLOT-VALUE-TYPE
:SLOT-INVERSE
:SLOT-CARDINALITY
:SLOT-MAXIMUM-CARDINALITY
:SLOT-MINIMUM-CARDINALITY
:SLOT-SAME-VALUES
:SLOT-NOT-SAME-VALUES
:SLOT-SUBSET-OF-VALUES
:SLOT-NUMERIC-MINIMUM
:SLOT-NUMERIC-MAXIMUM
:SLOT-SOME-VALUES
:SLOT-COLLECTION-TYPE

5.2 Responsibilities, Actions and Predicates Supported by the Ontology Agent
This section describes responsibilities, actions and predicates supported by the ontology agent. They compose the
FIPA-Ontol-Service-Ontology.

An action can be requested or canceled, for example:

(request
 :sender
 (agent-identifier

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 34

 :name client-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :language FIPA-SL2
 :ontology (set FIPA-Ontol-Service-Ontology animal-ontology)
 :content
 (action
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 (assert (subclass-of whale mammal))))

In the above example, agent client-agent requests ontology-agent the action of assertion that whale is an
instance of mammal in an ontology called animal-ontology with language FIPA-SL2 (see [FIPA0008]) and ontology
FIPA-Ontol-Service-Ontology.

Predicates can be informeded, configmeded, disconfirmeded, query-if or query-refed. For example:

(inform
 :sender
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name client-agent@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :language FIPA-SL2
 :ontology (set FIPA-Ontol-Service-Ontology animal-ontology)
 :content
 (subclass-of whale mammal))

In the above example ontology-agent informs client-agent that (it believes it is true that) whale is a subclass of
mammal.

5.2.1 Responsibilities of the Ontology Agent

The OA maintains ontology by defining, modifying or removing terms and definitions contained in the ontology. It responds
to queries about the terms in an ontology or relationship between ontologies. The OA can provide the translation service of
expressions between different ontologies or different content languages by itself, possibly as a wrapper to an ontology
server. The actions and predicates described in this section are used in conjunction with FIPA ACL to perform these
functions.

5.2.2 Assertion

The action ASSERT must be used to request to assert a predicate in an ontology. The syntax of ASSERT action is as
follows:

(ASSERT (predicate))

The ontology in which the predicate must be asserted is identified by its ontology-name in the ontology parameter of the
ACL message. The effect of asserting a predicate is to add, create or define the said predicate in the ontology definition.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 35

The OA is responsible to respect the consistency of the ontology and it can refuse (using the refuse communicative
act) to do the action if the result would produce an inconsistent ontology.

All predicates in the FIPA-Meta-Ontology can be passed as a parameter of this action.

5.2.3 Retraction

The action RETRACT must be used to request the OA to retract a predicate in an ontology. The syntax of RETRACT
action is as follows:

(RETRACT (predicate))

The ontology in which the predicate must be asserted is identified by its ontology-name in the ontology attribute of the
ACL message. The effect of retracting a predicate is to remove, delete or detach the said predicate in the ontology
definition. The OA is responsible to respect consistency of the ontology and it can refuse (using the refuse
communicative act) to do the action if the result would produce an inconsistent ontology.

All predicates in the FIPA-Meta-Ontology can be passed as a parameter of this action.

5.2.4 Query

This section describes the actions and predicates for querying and identifying the ontologies. Typical queries include
questions about relationship between terms or between ontologies, and identifying a shared sub-ontology for
communication.

The query-if communicative act (see [FIPA00053]) is used to query a proposition, which is either true or false. The
query-ref communicative act (see [FIPA00054]) is used to ask for identifying referencing expression, which denotes an
object14.

All predicates in the FIPA-Meta-Ontology can be used in the content of these communicative acts.

The :ontology parameter of an ACL message should include both FIPA-Ontol-Service-Ontology and the
identifier of the ontology being queried. For example, the following is a query from client-agent to ontology-agent
asking for the reference of instances of a class citrus:

(query-ref
 :sender
 (agent-identifier
 :name client-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :language FIPA-SL
 :ontology (set FIPA-Ontol-Service-Ontology fruits-ontology)
 :content
 (iota ?x (instance-of ?x citrus))
 :reply-with citrus-query)

14 The reader might ask why the query is not an action, as the previous ones, but a communicative act. It must then be noticed that the previous
actions correspond to an administrative request to actually modify an ontology. In this case, the intention of the sender agent is instead to query
the knowledge base of the OA.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 36

The ontology-agent can then reply with the following inform message answering that the queried instances of the
class citrus are orange, lemon and grapefruit:

(inform
 :sender
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name client-agent@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :language FIPA-SL
 :ontology (set FIPA-Ontol-Service-Ontology fruits-ontology)
 :content
 (= (iota ?x (instance-of ?x citrus)) (orange lemon grapefruit))
 :in-reply-to citrus-query)

5.2.5 Modify

This section describes the action for modifying ontologies. Basically, this kind of action is a combination of querying,
removing and adding predicates about the symbols in the ontology. However, different from doing these actions one by
one, the execution of the sequence of actions must be atomic, that is other actions cannot intervene in the modify action
during the execution of it in order to assure the consistency of the transaction. If at least one of the atomic actions in the
modify action fails, the ontology agent must recover the situation just before the modify action commences. Actions must
be executed in sequence. The sequence of actions is independent from other actions that are running at the same time
on the same ontology agent. Other agents cannot see the interim status of the modify action.

To enable such an action, the following action operator:

(ATOMIC-SEQUENCE action*)

is introduced. The semantics of ATOMIC-SEQUENCE is a sequence of actions with guaranteed atomicity, consistency,
independence and durability (ACID property). Some locking mechanism is assumed but the kind of lock is implementation
dependent. For example:

(action OA
 (atomic-sequence
 (action OA (assert animal (class mammal)))
 (action OA (retract animal (subclass-of whale fish)))
 (action OA (retract animal (class fish)))
 (action OA (assert animal (subclass-of whale mammal)))))

5.2.6 Translation of the Terms and Sentences between Ontologies

TRANSLATE is an action of translating the terms and sentences between translatable ontologies. Before issuing the
translate action, the agent must check whether the ontologies are translatable or not, using the predicate described in the
next section. The following is the syntax of TRANSLATE action:

(TRANSLATE expression translation-description)

This action has always a result and should be used in a FIPA-request interaction protocol in order to receive the result of
the translation of an expression. For example, if agent client-agent wants to translate a US-English sentence to
Italian, it will use the following ACL:

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 37

(request
 :sender
 (agent-identifier
 :name client-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :protocol FIPA-Request
 :language FIPA-SL2
 :ontology FIPA-Ontol-Service-Ontology
 :content
 (action
 (agent-identifier
 :name ontology-agent@foo.co
 :addresses (sequence iiop://foo.com/acc))
 (translate (temperature today (F 50))
 (translation-description
 :from us-english-ontology
 :to italian-ontology)))
 :reply-with translation-query-1123234)

The OA replies with an inform message:

(inform
 :sender
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name client-agent@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :language FIPA-SL2
 :ontology (set FIPA-Ontol-Service-Ontology)
 :content
 (= (iota ?i
 (result
 (action
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))

 (translate (temperature today (F 50)))
 (translation-description
 :from us-english-ontology
 :to italian-ontology))) ?i))
 (temperatura oggi (C 10)))
 :in-reply-to translation-query-1123234)

The following predicate can be used to determine the relationship between source-ontology and destination-ontology:

(ontol-relationship ?source-ontology ?destination-ontology ?level)

For example, an agent wishing to know if there exists a translation between two ontologies may use the following:

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 38

(query-ref
 :sender
 (agent-identifier
 :name Agent1@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name OA@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :language FIPA-SL
 :ontology FIPA-Ontol-Service-Ontology
 :content
 (iota ?level (ontol-relationship O1 O2 ?level)))

An OA that is not able to provide any translation between the two ontologies may answer:

(inform
 :sender
 (agent-identifier
 :name OA@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name Agent1@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :language FIPA-SL
 :ontology FIPA-Ontol-Service-Ontology
 :content
 nil)

5.2.7 Exceptions

Errors and exceptions are handled in the same manner as described in [FIPA00023]:

• not-understood reasons.

• failure reasons.

• refuse reasons. The following refuse reasons can be used by the OA to refuse to modify a frame when it is read-

only or when it creates an inconsistency in the ontology:

(READ-ONLY <frame-name>)
(INCONSISTENT <frame-name>)

For example, the agent client-agent requests ontology-agent to assert a predicate but it is refused:

(request
 :sender
 (agent-identifier
 :name client-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :content

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 39

 (action
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 (assert animal-ontology (instance-of whale fish))))
 (refuse
 :sender
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name client-agent@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :content
 ((action
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))

 (assert animal-ontology (instance-of whale fish)))
 unauthorised))

Additionally, the agent client-agent queries ontology-agent the result of asserting a predicate. It is rejected by
the OA because of an error:

(query-ref
 :sender
 (agent-identifier
 :name client-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :content
 (iota ?r
 (result
 (action
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 (assert animal-ontology (instance-of whale fish))) ?r))))
 (inform
 :sender
 (agent-identifier
 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 :receiver (set
 (agent-identifier
 :name client-agent@foo.com
 :addresses (sequence iiop://foo.com/acc)))
 :content
 (= (iota ?r
 (result
 (action
 (agent-identifier

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 40

 :name ontology-agent@foo.com
 :addresses (sequence iiop://foo.com/acc))
 (assert animal-ontology (instance-of whale fish))) ?r)))
 unauthorised))

5.3 Interaction Protocol to Agree on a Shared Ontology
Agents must agree on an ontology in order to communicate. Consider an Agent A that commits to ontology O1 and
requests a service provided by Agent B. The simplest approach is for agent A to request the service from agent B,
specifying ontology O1. If Agent B understands ontology O1, it will perform the service, otherwise it will answer not-
understood. In the latter case the communication cannot be achieved because the two partners do not share a
common understanding of the symbols used in the domain of discourse.

The most simple alternative to this situation, and probably also the most used, is that an agent, who is searching for a
specific service, queries the DF for agents which provide that specific service and that, in addition, support a specific
ontology. Provided that such an agent exists, the ontology sharing is guaranteed.

A second approach allows Agent A to communicate with Agent B when the agents share two ontologies with different
names but that are Identical or Equivalent (see section 3.3, Relationships Between Ontologies). The knowledge
about the existing relationships between two ontologies can be accessed in general from the OA by querying with the
ontol-relationship predicate.

Provided that such an Identical or Equivalent relationship exists, the communication is again guaranteed because
of the sharing of both the vocabulary and the logical axiomatization. As a sub-case of the previous one, if O1 is a sub-
ontology of one of the ontologies known by Agent B, the Agent A can still communicate with Agent B, even if the vice-
versa is not guaranteed.

Finally, an other approach is when a translation relationship exists between O1 and one of the ontologies to which Agent
B commits. In this case, Agent A can query the DF for an agent who provides such a translation service and it can still
communicate with Agent B by using the translation as a proxy service.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 41

5.4 Meta Ontology Predicates and Actions
This is the ontology that should be used by agents to request the services of an OA. It extends the FIPA-Meta-
Ontology described in section 5.

5.4.1 Predicates

Predicates Description
(ontol-relationship ?o1 ?o2 ?level) Is true if and only if there is a relationship of type level between

the ontology o1 and the ontology o2. See section 3.3 for a detailed
description of this predicate

5.4.2 Actions

Actions Description
(assert predicate) Asserts the predicate in the ontology specified by :ontology

parameter.
(retract predicate) Retracts the predicate in the ontology specified by :ontology

parameter.
(atomic-sequence <action>*) Introduces a transaction-type sequence of actions which is

treated as if to be a single action. It is used to modify an existing
ontology by combining the actions of retraction and assertion, for
example. The mechanism to maintain the consistency inside the
sequence and to protect values from outside the sequence is
dependent on the implementation.

(translate <expression>
 <translation-description>)

Translates the expression as specified by the translation-
description. Should be used with FIPA-Request protocol.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 42

6 References
[ANSIkif] Knowledge Interchange Format, Draft Proposal. American Nation Standards Institute, 1998.

http://meta.stanford.edu/kif/dpans.html
[Bayardo96] Semantic Integration of Information in Open and Dynamic Environments, Bayardo, R., Boher, W., Brice,

R., Cichocki, A., Fowler, G., Helal, A., Kashyap, V., Ksiezyk, T., Martin, G., Nodine, M., Rashid, M.,
Ruisnkiewicz, Shea, R., Unnikrishnan, C., Unruh, A. and Woelk, D. MCC Technical Report MCC-INSL-
088-96, October 1996.
http://www.mcc.com/projects/infosleuth/

[FIPAacl] FIPA Agent Communication Language Specification. Foundation for Intelligent Physical Agents, 2000.
[FIPA00008] FIPA SL Content Language Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00008/
[FIPA00023] FIPA Agent Management Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00023/
[FIPA00042] FIPA CFP Communicative Act Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00042/
[FIPA00053] FIPA Query-If Communicative Act Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00053/
[FIPA00054] FIPA Query-Ref Communicative Act Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00054/
[OKBC] Open Knowledge Base Connectivity Specification, Version 2.0.4. Stanford University, 1998.

http://ontolingua.stanford.edu/okbc/
[W3Crdf] Resource Description Framework Model and Syntax Specification. World Wide Web Consortium, 1999.

http://www.w3.org/RDF/

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 43

7 Informative Annex A — Ontologies and Conceptualizations15
Despite its crucial importance for guaranteeing the exchange of content information among agents, the very notion of
ontology is not completely clear yet from a theoretical point of view (although the various definitions proposed in the
literature are slowly converging), and a suitable “reference model” for ontologies needs to be established in order to exploit
them in the FIPA architecture.

The purpose of this section is to present an overview of such a reference model, aimed to clarify the following points:

• The distinction between an ontology and its underlying conceptualization.

• The importance of axiomatic ontologies with respect to mere vocabularies.

• A characterization of the ontology sharing problem.

• The distinctions among the basic kinds of ontology.

7.1 Ontologies vs. Conceptualizations
In the philosophical sense, we may refer to an ontology as a particular system of categories accounting for a certain
vision of the world. As such, this system does not depend on a particular language: Aristotle’s ontology is always the
same, independently of the language used to describe it. On the other hand, in its most prevalent use in AI, an ontology
refers to an engineering artefact, constituted by a specific vocabulary used to describe a certain reality, plus a set of
explicit assumptions regarding the intended meaning of the vocabulary words. This set of assumptions has usually the
form of a first-order logical theory, where vocabulary words appear as unary or binary predicate names, respectively called
concepts and relations. In the simplest case, an ontology describes a hierarchy of concepts related by subsumption
relationships; in more sophisticated cases, suitable axioms are added in order to express other relationships between
concepts and to constrain their intended interpretation.

The two readings of “ontology” described above are indeed related to each other, but in order to solve the terminological
impasse we need to choose one of them, inventing a new name for the other: we shall adopt the AI reading, using the
word conceptualization to refer to the philosophical reading. So two ontologies can be different in the vocabulary used
(using English or Italian words, for instance) while sharing the same conceptualization.

With this terminological clarification, an ontology can be defined as a specification of a conceptualization16. The latter
concerns the way an agent structures its perceptions about the world, while the former gives a meaning to the vocabulary
used by the agent to communicate such perceptions. Two agents may share the same conceptualization while using
different vocabularies. For instance, the (usual) conceptualization underlying the English term Apple is the same as for the
Italian term mela, and refers to the intrinsic nature and structure of all possible apples. The two terms belong to two
different ontologies while sharing the same conceptualization. A clear separation between ontology and conceptualization
becomes essential to address the issues related to ontology sharing, fusion, and translation, which in general imply
multiple languages and multiple world views.

A conceptualization is not concerned with meaning assignments, but just with the formal structure of reality as perceived
and organized by an agent, independently of:

• the language used to describe it;

• the actual occurrence of a specific situation.

An ontology, on the other hand, is first of all a vocabulary. However, an ontology consisting only of a vocabulary would be
of very limited use, since its intended meaning would be not explicit. Therefore, besides specifying a vocabulary, an

15 This annex is mainly an adaptation of [Guarino 1998].
2While this expression is the same introduced in [Gruber 1995], the notion of “conceptualization” adopted here is not the one referred to in that
paper (taken from [Genesereth and Nilsson 1987]), as discussed below.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 44

ontology must specify the intended meaning of such vocabulary, i.e. its underlying conceptualization. In some cases, the
terms used belong to a very specific technical vocabulary, and their meaning is well agreed upon within a community of
human agents. Things are different however in the case of ambiguous terms belonging to everyday natural language, or
when computerized agents need to communicate.

7.2 A Formal Account of Ontologies and Conceptualizations
The notions introduced above require a suitable formalization in order to make clear the relationship between an ontology,
its intended models, and a conceptualization. The latter notion has been defined in a well-known AI textbook [Genesereth
and Nilsson 87] as a structure <D, R>, where D is a domain and R is a set or relevant relations on D. This definition has
been then used by Gruber, who defined an ontology as “a specification of a conceptualization” [Gruber 95]. While
maintaining the validity of Gruber’s expression, already introduced above, we shall adopt in this document a notion of
“conceptualization” different from the one introduced by Genesereth and Nilsson, following the proposal made in [Guarino
and Giaretta 95], further revised in [Guarino 98].

7.2.1 What is a Conceptualization

The problem with Genesereth and Nilsson’s notion of conceptualization is that it refers to ordinary mathematical relations
on D, i.e. extensional relations. These relations reflect a particular state of affairs: for instance, in the blocks world, they
may reflect a particular arrangement of blocks on the table (see figure 7). We need instead to focus on the meaning of
these relations, independently of a state of affairs: for instance, the meaning of the “above” relation lies in the way it refers
to certain couples of blocks according to their spatial arrangement. We need therefore to speak of intensional relations:
we call them conceptual relations, reserving the simple term “relation” to ordinary mathematical relations.

a

b

c e

d a

b

c

e

d

(a) (b)

Figure 7: Blocks on a table. (a) A possible arrangement of blocks. (b) A different arrangement. Also a different
conceptualization? (From [Guarino and Giaretta 1995])

While ordinary relations are defined on a certain domain, conceptual relations are defined on a domain space. We shall
define a domain space as a structure <D, W>, where D is a domain and W is the set of all relevant states of affairs of
such domain (which we shall also call possible worlds). For instance, D may be a set of blocks on a table and W can be
the set of all possible spatial arrangements of these blocks. Given a domain space <D, W>, we define a conceptual

relation ρ
n
 of arity n on <D, W> as a total function ρ

n
: W→2D

n
 from W into the set of all n-ary (ordinary) relations on D.

For a generic conceptual relation ρ, the set Eρ = {ρ(w) | w∈W} will contain the admittable extensions of ρ. A
conceptualization for D can be now defined as a tuple C = <D, W, ℜ>, where ℜ is a set of conceptual relations on <D,
W>17. We can say therefore that a conceptualization is a set of conceptual relations defined on a domain space.
Consider now the structure <D, R> introduced by Genesereth and Nilsson. Since it refers to a particular world (or state of
affairs), we shall call it a world structure. It is easy to see that a conceptualization defines many of such world structures,
one for each world: they shall be called the intended world structures according to such conceptualization. Let C = <D,
W, ℜ> be a conceptualization. For each possible world w∈W, the corresponding world structure according to C is the
structure SwC = <D, RwC>, where RwC ={ρ(w) | ρ∈ℜ} is the set of extensions (relative to w) of the elements of ℜ. We shall
denote with SC the set {SwC | w∈W} all the intended world structures of C.

17 In the following, symbols denoting structures and sets of sets appear in boldface.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 45

Let us consider now a logical language L, with vocabulary V. Rearranging the standard definition, we can define a model
for L as a structure <S, I>, where S = <D, R> is a world structure and I: V→D∪R is an interpretation function assigning
elements of D to constant symbols of V, and elements of R to predicate symbols of V. As well known, a model fixes
therefore a particular extensional interpretation of the language. Analogously, we can fix an intensional interpretation by
means of a structure <C, ℑ>, where C = <D, W, ℜ> is a conceptualization and ℑ: V→D∪ℜ is a function assigning
elements of D to constant symbols of V, and elements of ℜ to predicate symbols of V. We shall call this intensional
interpretation an ontological commitment for L. If K = <C, ℑ> is a an ontological commitment for L, we say that L
commits to C by means of K, while C is the underlying conceptualization of K18.

Given a language L with vocabulary V, and an ontological commitment K = <C, ℑ> for L, a model <S, I> will be
compatible with K if: i) S∈SC; ii) for each constant c, I(c) = ℑ(c); iii) for each predicate symbol p, I maps such a predicate
into an admittable extension of ℑ(p), i.e. there exist a conceptual relation ρ and a world w such that ℑ(p) = ρ ∧ ρ(w) = I(p).
The set IK(L) of all models of L that are compatible with K will be called the set of intended models of L according to K.

In general, there will be no way to reconstruct the ontological commitment of a language from a set of its intended
models, since a model does not necessarily reflect a particular world: in fact, since the relevant relations considered may
not be enough to completely characterize a state of affairs, a model may actually describe a situation common to many
states of affairs. This means that it is impossible to reconstruct the correspondence between worlds and extensional
relations established by the underlying conceptualization. A set of intended models is therefore only a weak
characterization of a conceptualization: it just excludes some absurd interpretations, without really describing the
“meaning” of the vocabulary.

7.2.2 What is an Ontology

We can now clarify the role of an ontology, considered as a set of logical axioms designed to account for the intended
meaning of a vocabulary. Given a language L with ontological commitment K, an ontology for L is a set of axioms
designed in a way such that the set of its models approximates as best as possible the set of intended models of L
according to K (see figure 8). In general, it is neither easy nor convenient to find an optimal set of axioms, so that an
ontology will admit other models besides the intended ones. Therefore, an ontology can “specify” a conceptualization only
in a very indirect way, since i) it can only approximate a set of intended models; ii) such a set of intended models is only
a weak characterization of a conceptualization. We shall say that an ontology O for a language L approximates a
conceptualization C if there exists an ontological commitment K = <C, ℑ> such that the intended models of L according
to K are included in the models of O. An ontology commits to C if i) it has been designed with the purpose of
characterizing C, and ii) it approximates C. A language L commits to an ontology O if it commits to some
conceptualization C such that O agrees on C. With these clarifications, we come up to the following definition, which
refines Gruber’s definition by making clear the difference between an ontology and a conceptualization:

From a logical point of view, an ontology is a logical theory accounting for the intended meaning of a formal
vocabulary19, i.e. its ontological commitment to a particular conceptualization of the world. The intended models of a
logical language using such a vocabulary are constrained by its ontological commitment. An ontology indirectly
reflects this commitment (and the underlying conceptualization) by approximating such intended models.

The relationships between vocabulary, conceptualization, ontological commitment and ontology are illustrated in figure 8.

18 The expression “ontological commitment” has been sometimes used to denote the result of the commitment itself, i.e., in our terminology, the
underlying conceptualization.
19 Not necessarily this formal vocabulary will be part of a logical language: for example, it may be a protocol of communication between agents.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 46

Intended models IK(L)

Language L

Conceptualization C

Models M(L)

commitmen t K = <C,�ℑ>

Ontology

Figure 8: The intended models of a logical language reflect its commitment to a conceptualization. An ontology indirectly
reflects this commitment (and the underlying conceptualization) by approximating this set of intended models. [From

Guarino 98]

7.3 The Ontology Integration Problem
Information integration is a major application area for ontologies. As well known, even if two agents adopt the same
vocabulary, there is no guarantee that they can agree on a certain information unless they commit to the same
conceptualization. Assuming that each agent has its own conceptualization, a necessary condition in order to make an
agreement possible is that the intended models of both conceptualizations overlap (see figure 9).

M(L)

IA(L)

IB(L)

Figure 9: Two agents A and B using the same language L can communicate only if the set of intended models IA(L) and
IB(L) associated to their conceptualizations overlap. [From Guarino 98]

Supposing now that these two sets of intended models are approximated by two different ontologies, it may be the case
that the latter overlap (i.e., they have some models in common) while their intended models do not (see figure 10). This

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 47

means that a bottom-up approach to systems integration based on the integration of multiple local ontologies may not
work, especially if the local ontologies are only focused on the conceptual relations relevant to a specific context, and
therefore they are only weak and ad hoc approximations of the intended models. Hence, it seems more convenient to
agree on a single top-level ontology rather than relying on agreements based on the intersection of different ontologies.

M(L)

IA(L)

IB(L)

Figure 10: The sets of models of two different axiomatizations, corresponding to different ontologies, may intersect while
the sets of intended models do not. [From Guarino 98]

7.4 Basic Kinds of Ontologies
We can classify ontologies along several dimensions:

• their degree of dependence on a particular task or domain,

• the level of detail of their axiomatization, and,

• the nature of their domain (either “object-level” or “meta-level”).

7.4.1 From Top-Level to Application-Level

The first dimensions suggest the distinctions illustrated in figure 11.

top-level ontology

domain ontology task ontology

application ontology

Figure 11: Kinds of ontologies, according to their level of dependence on a particular task or point of view. Thick arrows
represent specialization relationships. From [Guarino 98].

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 48

• Top-level ontologies describe very general concepts like space, time, matter, object, event, action, etc., which are
independent of a particular problem or domain: it seems therefore reasonable, at least in theory, to have unified top-
level ontologies for large communities of users. The development of a general enough top-level ontology is a very
serious task, which hasn’t been satisfactory accomplished yet (see the efforts of the ANSI X3T2 Ad Hoc Group on
Ontology). However, the adoption of a single agreed-upon top level seems to be preferable to a “bottom-up” approach
based on the integration of more specific ontologies.

• Domain ontologies and task ontologies describe, respectively, the vocabulary related to a generic domain (like
medicine, or automobiles) or a generic task or activity (like diagnosing or selling), by specializing the terms
introduced in the top-level ontology.

• Application ontologies describe concepts depending both on a particular domain and task, which are often
specializations of both the related ontologies. These concepts often correspond to roles played by domain entities
while performing a certain activity, like replaceable unit or spare component.

It may be important to make clear the difference between an application ontology and a knowledge base. The answer is
related to the purpose of an ontology, which is a particular knowledge base, describing facts assumed to be always true
by a community of users, in virtue of the agreed-upon meaning of the vocabulary used. A generic knowledge base,
instead, may also describe facts and assertions related to a particular state of affairs or a particular epistemic state.
Within a generic knowledge base, we can distinguish therefore two components: the ontology (containing state-
independent information) and the “core” knowledge base (containing state-dependent information).

7.4.2 Shareable Ontologies and Reference Ontologies

Another important classification dimension for ontologies is their level of detail, i.e., in other terms, the degree of
characterization of the intended models. A fine-grained ontology very rich of axioms, written in a very expressive language
like full first order logic, gets closer to specifying the intended meaning of a vocabulary (and therefore it may be used to
establish consensus about sharing that vocabulary, or a knowledge base which uses that vocabulary), but it usually hard
to develop and hard to reason on. A coarse ontology, on the other hand, may consist of a minimal set of axioms written in
a language of minimal expressivity, to support only a limited set of specific services, intended to be shared among users
which already agree on the underlying conceptualization. We can distinguish therefore between detailed reference
ontologies and coarse shareable ontologies, or maybe between off-line and on-line ontologies: the former are only
accessed from time to time for reference purposes, while the latter support core system’s functionalities.

7.4.3 Meta-Level Ontologies

A further, separate kind of ontology is constituted by what have been called representation ontologies [Van Heijst et al.
1997] They are in fact meta-level ontologies, describing a classification of the primitives used by a knowledge
representation language (like concepts, attributes, relations...). An example of a representation ontology is the OKBC
ontology, used to support translations within different knowledge representation languages. A further example is the
ontology of meta-level primitives presented in [Guarino et al. 94], which differs from the OKBC Ontology in assuming a
non-neutral ontological commitment for the representation primitives.

7.5 References
Genesereth, M. R. and Nilsson, N. J. 1987. Logical Foundation of Artificial Intelligence. Morgan Kaufmann, Los Altos,
California.
Gruber, T. R. 1995. Toward Principles for the Design of Ontologies Used for Knowledge Sharing. International Journal of
Human and Computer Studies, 43(5/6): 907-928.
Guarino, N. 1998. Formal Ontology in Information Systems. In N. Guarino (ed.) Formal Ontology in Information Systems.
Proceedings of FOIS'98, Trento, Italy, 6-8 June 1998. IOS Press, Amsterdam: 3-15.
Guarino, N., Carrara, M., and Giaretta, P. 1994. An Ontology of Meta-Level Categories. In D. J., E. Sandewall and P.
Torasso (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International
Conference (KR94). Morgan Kaufmann, San Mateo, CA: 270-280.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 49

Guarino, N. and Giaretta, P. 1995. Ontologies and Knowledge Bases: Towards a Terminological Clarification. In N. Mars
(ed.) Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing 1995. IOS Press, Amsterdam:
25-32.
Van Heijst, G., Schreiber, A. T., and Wielinga, B. J. 1997. Using Explicit Ontologies in KBS Development. International
Journal of Human and Computer Studies, 46: 183-292.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 50

8 Informative Annex B — Guidelines to Define a New Ontology20

8.1 Set of Principles to Useful in the Development of Ontologies
• Clarity and objectivity: The ontology should provide a glossary of the vocabulary used in providing objective

definitions and precise meaning in natural language form.

• Completeness: A definition expressed by a necessary and sufficient condition is preferred over a partial definition.

• Coherence : It should permit inferences that are consistent with the definitions.

• Maximal monotonic extendibility: New general or specialised terms should be included in the ontology in such a
way that does not require the revision of the existing definitions.

• Minimal ontological commitment: It should make as few axioms as possible about the world being modeled.

• Ontological Distinction Principle: Classes carrying different identity criteria should be disjoint. This principle is
discussed in more detail in [12].

8.2 Ontology Development Process
The ontology development process refers to the tasks you carry out when building ontologies. Adapting the IEEE software
development process to ontology development process, the tasks identified are classified into three categories as shown
in figure 12.

Project-Management
Activities

 Development-Oriented
Activities

 Integral
Activities

 Pre-development
Planning Specify Acquire Knowledge

Control Development Evaluate
 Conceptualise
Quality Assurance Formalize Document
 Integrate
 Implement Configuration Management

 Post-development
 Maintenance

Figure 12: Ontology development process (proposition from [1])

8.2.1 Project Management Activities

Their main aim is to assure a well-running ontology. These tasks are usual in the classical software development process.
They are simply briefly reminded:

• Planning: It is the ordered list of the tasks to be done, represented for example by Gantt diagrams. They also provide

information on the resources allocated to the different tasks (i.e. human, budget, software tools, hardware platform).

• Control: Its goal is to guarantee that the planned tasks are done in the way they were intended to be performed. This
should prevent typically from delays, errors and omission.

20 The annex is mainly a slight adaptation of the reference [1].

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 51

• Quality assurance: It assures that each delivery of tasks is compliant to a given quality standard.

8.2.2 Development Activities

The following tasks describe the practical skills, techniques and methods used to develop an ontology:

• Specify: The scope of the ontology under consideration must be defined, its goal, its foreseen usage and end-users’

needs. The degree of formality of the writing of this requirement specification may vary, from informal text to more
structured framework (e.g. set of competence questions).

• Conceptualise: Its goal is to build a conceptual model that describes the problem and its solution.

• Formalize: This activity transforms the conceptual model into a formal model that is semi-computable. Conceptual
graphs, frame-oriented or description logic representations could be used to formalize the ontology.

• Integrate: Ontologies are built to be reused. Accordingly, duplication of work in building ontologies has even less
sense than in the traditional object-oriented software development. So, reuse of existing ontologies is encouraged.
Nevertheless, a general method to integrate ontologically heterogeneous taxonomic knowledge is not known. This
specification allows the assertion of some relationships between ontologies, as described in section 3.3.

• Implement: Codification of the ontology in a formal language. For a reference framework for selecting target
languages see [7].

• Maintain: Additions and modifications of an ontology should be possible.

8.2.3 Integral Activities

These activities are prominent tasks, since all the development-oriented tasks are fully dependent on the quality achieved
during these tasks. The interaction between development-oriented and integral activities will be explicated in the life cycle
of the ontology (below).

• Acquire knowledge : Elicitation of knowledge will be done via KBSs knowledge elicitation techniques [8]. As a

result, the list of the sources of knowledge and the rough description of the techniques used in the elicitation process
will be available.

• Evaluate: Before publishing an ontology, make a technical judgement with respect to a framework of reference. See
[9] [10].

• Document: To allow reuse and sharing of ontologies, a well written documentation is absolutely needed.

• Configuration management: It is the task of keeping records of each release issued during the development of the
ontology. This is a classical task in software development.

8.2.4 Ontology Life Cycle

This indicates the order and depth in which activities and tasks should be performed. So, the life cycle will exhibit the
different states of the developed ontology: i.e. specification, conceptualization, formalization, integration, implementation
and maintenance. Excepting the integration phase which is stressed here to be placed before the implementation for the
purpose of reuse of already available ontologies, the life cycle resembles the life cycle of traditional software development.

8.3 Methodology to Build Ontologies
In general, methodologies give you a set of guidelines of how you should carry out the activities identified in the
development process, what kinds of techniques are the most appropriate in each activity and what is produced at the end
of each activity.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 52

One such methodology is given here as an example.

8.3.1 Specification

The goal of the specification is to produce either an informal, semi-formal or formal ontology specification document
written in natural language. The following information should at least be included:

1. Purpose of the ontology: its intended uses (e.g., teaching, manufacturing, arts, etc.), end-users (e.g., actor and roles)

and use case scenarios (e.g., teacher, unit production manager, researcher, etc.). That is the clearly defined domain
of application.

2. Degree of formality used to codify the ontology. This ranges from informal natural language to a rigorous formal
language.

3. Scope of the ontology: the detailed summary of its content.

The formality of the ontology specification document varies depending on whether a natural language, competency
questions or a middle-out approach is used.

For example in a middle-out approach, you can use a glossary of terms to define an initial set of primitive concepts and
using these concepts to define new ones. It is also advisable to group concepts in concepts classification trees. The use
of these intermediate representations will allow not only the verification, at the earliest stage, of relevant terms missed and
their inclusion in the specification document, but also the removal of terms that are synonyms and irrelevant in the
ontology. The goal of these checks is to guarantee the conciseness and completeness of the ontology specification
document. The middle-out approach, as opposed to the classical bottom-up or top-down approaches, allows to identify
some primary concepts of the ontology, in a first stage. Then, it allows to specialize or generalize when needed. As a
result, the terms in use are more stable, and so less re-work and overall effort are required.

As mentioned by some authors, and in fact already used in traditional software development at the analysis phase, the
use of motivating scenarios (use cases), that present the problem as a story of problems or examples and a set of
intuitive solutions, are very useful. Those scenarios could consist of a set of informal competency questions that are the
questions that an ontology must be able to answer in natural language. Then, the set of informal competency questions
are translated into a formal set of competency questions using first-order logic (or higher). This formal set is also used to
evaluate the extensions of the ontology.

Figure 13 shows a short example of such specification document in the domain of chemicals.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 53

Ontology Requirements Specification Document

Domain: Chemicals
Date: May, 15th 1996
Conceptualised-by: Chemical Products Association
Implemented-by: Software House Gmbh
Purpose :
Ontology about chemical substances to be used when information about chemical elements is required
in teaching, manufacturing and analysis. This ontology could be used to ascertain, e.g. the atomic
weight of the element Sodium.
Level of Formality: Semi-formal
Scope:
List of 103 elements of substances: Lithium, Sodium, Chlorine, ...
List of concepts: Halogens, noble-gases, semi-metal, metal,
List of properties and their values: atomic-number, atomic-weight, atomic-volume-at-20°C, ...
Sources of Knowledge:
Handbook of chemistry and Physics. 65th edition. CRC-Press Inc., 1984-1985.

Figure 13: Ontology requirements specification (from [1])

As an ontology specification document cannot be tested for overall completeness, someone may find new relevant term to
be included at any time and anywhere. A good ontology specification document must have the following properties:

• Conciseness: each and every term is relevant, and there are no duplicated or irrelevant terms.

• Partial completeness: coverage of the terms.

• Realism : meanings of the terms and relationships making sense in the domain.

8.3.2 Knowledge Acquisition

Knowledge acquisition is an independent phase in the ontology development process. However, it is coincident with other
phases. Most of the acquisition is done simultaneously with the requirements specifications phase, and decreases as the
ontology development process moves forward.

Experts, books, handbooks, figures, tables and even other ontologies are sources of knowledge from which the knowledge
can be elicited and acquired, used in conjunction with techniques such as: brainstorming, interviews, questionnaires,
formal and informal texts analysis, knowledge acquisition tools, etc. ... For example, if you have no clear idea of the
purpose of your ontology, the brainstorming technique, informal interviews with experts, and examination of similar
ontologies will allow you to elaborate a preliminary glossary with terms that are potentially relevant. To refine the list of
terms and their meanings, formal and informal texts analysis techniques on books and handbooks combined with
structures and non-structured interviews with experts might help you to build concepts classification trees and to compare
them with figures given in books.

8.3.3 Ontology and Natural Language21

One promising approach for establishing an ontology and acquire knowledge is to incorporate results from disciplines like
linguistics. Researchers in terminology for example are interested in organizing domains from a conceptual point of view
from the analysis of terms used to name concepts in texts. On the other hand, an ontology is based on the definition of a
structured and formalized set of concepts, and a great part of it comes from text analysis, such as transcript of interviews,
and technical documentation. In such cases, the theory of a domain can only be found by reaching concepts from terms.
For several years, some researchers in terminology have identified a parallel between terminology as a practical discipline
and artificial intelligence, in particular knowledge engineering. From a knowledge engineering point of view, we notice two
trends. One trend is to propose to elicit knowledge by using automatic processing tools, widely used in linguistics.

21 Contribution from Univ. d’Orsay, Paris Sud, LRI (Chantal Reynaud)

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 54

Another one is to establish a synergy between research works in artificial intelligence and in linguistics, by means of
terminology. An overview of these developments is given below.

Natural language processing tools may help to support modelling from texts in two ways. First, they can help to find the
terms of a domain [Bou94], [BGG96] [OFR96]. Existing terminologies or thesauri may be reused and increased or new
ones may be created. Second, they can help to structure a terminological base by identifying relations between concepts
[Jou95] [JME95] [Gar97].

Three steps are necessary to find the terms of a domain. At the beginning, nominal groups are isolated from a corpus
considered as being representative of the studied domain. Then, those that can't be chosen as terms because of
morphological or semantic characteristics are eliminated. Finally, the nominal sequences that will be retained as terms
are chosen. Usually, this last step requires a human expertise.

Identifying relations between concepts is composed of three steps too. The first one identifies the co-occurrences of
terms. Two terms are co-occurrent if they both appear in a given text window which may be defined in several ways: a
number of words, a documentary segmentation (entire document, section), a syntactic cutting of sentences, ... The
second step computes a similarity between terms with respect to contexts they share. Then, the third step can determine
the terms that are semantically related. In most cases, identified relations are the following: semantic proximity,
meronimy, causal or more specific relations.

Some researchers have focussed on trying to benefit from approaches from both linguistics and knowledge engineering.
They have studied mutual contributions, and their work has led them to elaborate the concept of Terminological
Knowledge Base (TKB). This concept was first defined by Ingrid Meyer [SMe91] [MSB+92].

Building a TKB is seen as an intermediate model that helps toward the construction of a formal ontology. A TKB is a
computer structure that contains conceptual data, represented in a network of domain concepts, but also linguistic data
on the terms used to name the concepts. Thus a TKB contains three levels of entities: term, concept and text. It is
structured by using three kinds of links. Relations between term and concept allow synonymy and paronimy to be
considered. Relations between concepts compose the network of domain concepts. Relations between term and/or
concept and text allow normalization choices to be justified or knowledge base to be documented. A TKB is interesting to
build a KBS, especially because it gathers some linguistic information on terms used to name concepts on. This can
enhance communication between experts, knowledge engineers and end-users, or be a great help for the knowledge
engineer to choose the names of the concepts in the system. Nevertheless, if most researchers agree with its structure,
problems still remain today about genericity and also about the construction and the exploitation of the corpus, which is
very important in the construction of the TKB because it is the reference from which modelling choices will be justified.
Current research continues in these directions.

8.4 References
[1] Assuncion Gomez-Pérez, "Knowledge Sharing and Reuse", Laboratorio de Intelligencia Artificial, Facultad de

informatica, Universidad Politécnica de Madrid.
[2] Guarino Nicola, "Understanding, building and using ontologies", International Journal of Human Computer Studies,

Incorporating Knowledge Acquisition, Vol. 46, Number 2/3, February/March 1997.
[3] Natalya Fridman Noy, Carole D. Hafner, "The State of the Art in Ontology Design: A survey and Comparative

Review", College of Computer Science, Northeastern University, Boston, MA.
[4] Gruber T., "Toward Principles for the design of Ontologies used for Knowledge Sharing. Technical report KSL-93-04.

Knowledge Systems Laboratory, Stanford University, CA., 1993.
[5] Borgo S., Guarino N., Masolo C., "Stratified Ontologies: The case of Physical Objects. Workshop on Ontological

Engineering, ECAI’96. Budapest, Hungary, pp. 17-28, 1996.
[6] Farquar A., Fikes R., Pratt W., Rice J., "Collaborative Ontology Construction for Information Integration", Technical

Report KSL-95-10. Knowledge Systems Laboratory, Stanford University, CA., 1995.
[7] Speel et al., "Scalability of the performance of Knowledge Representation Systems". Towards very large knowledge

bases, N. Mars editor, IOS Press, Amsterdam, pp. 173-184, 1995.
[8] Uschold M., Grüninger M., "Ontologies: Principles, Methods and Applications", Knowledge Engineering review, Vol.

11, N° 2, June 1996.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

 55

[9] Gomez-Pérez A., "A framework to verify knowledge sharing technology", Expert systems with application, Vol. 11,
N° 4, pp. 519-529, 1996.

[10] Gomez-Pérez A., "From Knowledge based systems to knowledge sharing technology : Evaluation and
Assessment". Technical Report KSL-94-73. Knowledge Systems Laboratory, Stanford University, CA., 1994.

[11] Borst P. and Akkermans H., "Engineering ontologies", Special issue : Using explicit ontologies in knowledge-based
system development, HCS, Vol. 46, Number 2/3, pp. 365-406, February/March 1997.

[12] Guarino, N., Some Ontological Principles for Designing Upper Level Lexical Resources. In Proceedings of First
International Conference on Language Resources and Evaluation. Granada, Spain, ELRA - European Language
Resources Association: 527-534, 1998.

Natural Language based Knowledge acquisition references

[BCo95] Bourigault D., Condamines A., "Réflexions autour du concept de base de connaissances Terminologiques",
Dans les actes des journées nationales du PRC-IA, Nancy, 1995.

[Bou94] Bourigault D., "LEXTER, un logiciel d'extraction de terminologie. Application ˆ l'acquisition des connaissances ˆ
partir de textes", Thèse de l'Ecole des Hautes Etudes en Sciences Sociales (Paris), 1994.

[BGG96] Bourigault D., Gonzalez-Mullier I., Gros C., "LEXTER, a natural Language Processing Tool for Terminology
Extraction", actes de EURALEX'96 (Gšteborg), 1996.

[Gar97] GARCIA D., "COATIS, an NLP System to Locate Expressions of Ations Connected by Causality Links", in Proc.
10th European Workshop, EKAW'97, San Feliu de Guixols, Catalonia, Spain, LNAI 1319, pp. 347-352, October 1997.

[Jou95] Jouis Ch., "SEEK, un logiciel d'acquisition des connaissances utilisant un savoir linguistique sans employer de
connaissances sur le monde externe", Actes des 6èmes Journées Acquisition et Validation (JAVA'95), Grenoble, pp.
159-172, 1995.

[JME95] Jouis Ch., Mustafa-Elhadi W., "Conceptual Modeling of database Schema using linguitic knowledge. Application
to terminological Knowledge bases", First Workshop on Application of Natural language to Databases (NLDB'95),
Versailles, Juin 95, pp. 103-118, 1995.

[MSB+92] Meyer I., Skuce D., Bowker L., Eck K., "Toward a new generation of terminological resources: an experiment
in building a terminological knowledge base. In Proceedings of the 14th International Conference on Computational
Linguistics, Nantes, pp. 956-960, 1992.

[OFR96] Oueslati R., Frath P., Rousselot F., "Term identification and Knowledge Extraction", International Conference on
Applied Natural Language and Artificial Intelligence, Montreal, June 1996.

[SMe91] Skuce D., Meyer I., Terminology and knowledge acquisition: exploring a symbiotic relationship. In Proc. 6th
Knowledge Acquisition for Knowledge-Based System Workshop, Banff, pp. 29/1-29/21.

[HA98] Houssem Assadi, Construction of a regional ontology from text and its use within a documentary system,
FOIS’98, pp. 236-249, Trento, June 1998.

