
 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA Ontology Service Specification 5

 6

Document title FIPA Ontology Service Specification
Document number XC00086D Document source FIP Architecture Board
Document status Experimental Date of this status 2001/08/10
Supersedes FIPA00006
Contact fab@fipa.org
Change history
2000/06/15 Approved for Experimental
2001/08/10 Line numbering added

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/ 17

Geneva, Switzerland 18

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

ii

Foreword 19

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 20
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-21
based applications. This occurs through open collaboration among its member organizations, which are companies and 22
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 23
and intends to contribute its results to the appropriate formal standards bodies. 24

The members of FIPA are individually and collectively committed to open competition in the development of agent-25
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 26
partnership, governmental body or international organization without restriction. In particular, members are not bound to 27
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 28
participation in FIPA. 29

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 30
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process 31
of specification may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA 32
specifications and their current status may be found in the FIPA List of Specifications. A list of terms and abbreviations 33
used in the FIPA specifications may be found in the FIPA Glossary. 34

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA 35
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA 36
specifications and upcoming meetings may be found at http://www.fipa.org/. 37

iii

Contents 38

1 Scope...1 39
2 Ontology Service ...2 40

2.1 Rationale for Explicit Ontologies...2 41
2.2 Benefits for Applications ...3 42
2.3 Sample Scenarios ..3 43

2.3.1 Scenario 1 – Definition of Terms Querying ...3 44
2.3.2 Scenario 2 – Shared Ontology Selection ..4 45
2.3.3 Scenario 3 – Equivalence Testing...4 46
2.3.4 Scenario 4 – Ontology Location ..5 47
2.3.5 Scenario 5 – Term Translation..5 48

3 Ontology Service Reference Model...7 49
3.1.1 Ontology Agent Services...7 50

3.2 Ontology Naming..8 51
3.3 Relationships Between Ontologies...8 52

3.3.1 Extending Ontologies ..8 53
3.3.2 Identical Ontologies...9 54
3.3.3 Equivalently Ontologies...9 55
3.3.4 Weakly Translatable Ontologies ...10 56
3.3.5 Strongly Translatable Ontologies ..10 57
3.3.6 Approximately Translatable Ontologies ..11 58
3.3.7 General Properties ..11 59

3.4 Registration of the Ontology Agent with the DF ...12 60
3.4.1 Querying the DF..13 61

4 Ontology Service Ontology..16 62
4.1 Object Descriptions ..16 63

4.1.1 Ontology Description...16 64
4.1.2 Translation Description ...16 65

5 Meta Ontology ...17 66
5.1 The OKBC Knowledge Model...17 67

5.1.1 Symbols ..31 68
5.2 Responsibilities, Actions and Predicates Supported by the Ontology Agent ...32 69

5.2.1 Responsibilities of the Ontology Agent ...33 70
5.2.2 Assertion ...33 71
5.2.3 Retraction..34 72
5.2.4 Query ..34 73
5.2.5 Modify..35 74
5.2.6 Translation of the Terms and Sentences between Ontologies ...35 75
5.2.7 Exceptions...37 76

5.3 Interaction Protocol to Agree on a Shared Ontology..38 77
5.4 Meta Ontology Predicates and Actions ..40 78

5.4.1 Predicates ...40 79
5.4.2 Actions ..40 80

6 References ..41 81
7 Informative Annex A — Ontologies and Conceptualizations ...42 82

7.1 Ontologies vs. Conceptualizations ...42 83
7.2 A Formal Account of Ontologies and Conceptualizations ..43 84

7.2.1 What is a Conceptualization..43 85
7.2.2 What is an Ontology..44 86

7.3 The Ontology Integration Problem..45 87
7.4 Basic Kinds of Ontologies...46 88

7.4.1 From Top-Level to Application-Level ..46 89
7.4.2 Shareable Ontologies and Reference Ontologies...47 90

iv

7.4.3 Meta-Level Ontologies ..47 91
7.5 References ...47 92

8 Informative Annex B — Guidelines to Define a New Ontology..49 93
8.1 Set of Principles to Useful in the Development of Ontologies ..49 94
8.2 Ontology Development Process...49 95

8.2.1 Project Management Activities..49 96
8.2.2 Development Activities..50 97
8.2.3 Integral Activities ...50 98
8.2.4 Ontology Life Cycle ...50 99

8.3 Methodology to Build Ontologies..51 100
8.3.1 Specification..51 101
8.3.2 Knowledge Acquisition ..52 102
8.3.3 Ontology and Natural Language ...52 103

8.4 References ...53 104

1 Scope 105

The model of agent communication in FIPA is based on the assumption that two agents, who wish to converse, share a 106
common ontology for the domain of discourse. It ensures that the agents ascribe the same meaning to the symbols 107
used in the message. For a given domain, designers may decide to use ontologies that are explicit, declaratively 108
represented (and stored somewhere) or, alternatively, ontologies that are implicitly encoded with the actual software 109
implementation of the agent themselves and thus are not formally published to an ontology service. 110
 111
This FIPA specification deals with technologies enabling agents to manage explicit, declaratively represented 112
ontologies. An ontology service for a community of agents is specified for this purpose. It is required that the service be 113
provided by a dedicated agent, called an Ontology Agent (OA), whose role in the community is to provide some or all of 114
the following services: 115
 116
• discovery of public ontologies in order to access them, 117

• maintain (for example, register with the DF, upload, download, and modify) a set of public ontologies, 118

• translate expressions between different ontologies and/or different content languages, 119

• respond to query for relationships between terms or between ontologies, and, 120

• facilitate the identification of a shared ontology for communication between two agents. 121

This specification deals only with the communicative interface to such a service while internal implementation and 122
capabilities are left to developers. It is not mandated that every OA be able to execute all those tasks (for example, 123
translation between ontologies, and identification of a shared ontology are in general very difficult and not always 124
possible to realize), but every OA must be able to participate into a communication about these tasks (possibly 125
responding that it is not able to execute the translation task). The interface is specified at the agent communication level 126
(see [FIPAacl] and [FIPA00023]) as opposed to a computational API. Therefore, the specification defines the interaction 127
protocols, the communicative acts and, in general, the vocabulary that agents must adopt when using this service. 128
 129
This specification enables developers to build: 130
 131
• agents that access such a service, 132

• agents that provide it, and, 133

• agents able to negotiate at run-time a shared ontology for communication. 134

The application of this specification does not prevent the existence of agents that, for a given domain, use ontologies 135
implicitly encoded with the implementation of the agents themselves. In these cases full agent communication and 136
understanding can still be obtained, however the services provided by the OA cannot apply to implicit encoded 137
ontologies. 138
 139
It is not intention of this document to mandate that every AP must include an Ontology Agent. However, in order to 140
promote interoperability, if one OA exists, then it must comply with this specification. And, if the services here described 141
are required by a specific agent platform implementation, then they must be implemented in compliance with this 142
specification. 143
 144
In order to keep the applicability of the specification as unrestricted as possible, the approach used is platform 145
independent. In particular, this specification does not mandate the storage format of ontologies but only the way agents 146
access an ontology service. However, in order to specify the service, an explicit representation formalism has been 147
specified. It is the FIPA-Meta-Ontology (see section 5) that allows communication of knowledge between agents. As 148
far as possible, care has been taken to integrate existing formalisms, such as [OKBC] and [W3CRDF]. 149

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

2

2 Ontology Service 150

An OA is an agent that provides access to one or more ontology servers and which provide ontology services to an 151
agent community. As well as all the other agents, the OA registers its service with the DF and it also registers the list of 152
maintained ontologies and their translation capabilities in order to allow agents to query the DF for the specific OA that 153
manages a specific ontology. 154
 155
Every agent can then request the services of the OA by using the communicative interface specified in section 6. In 156
particular, they can request to define, modify or remove terms and definitions of the ontology; they can request to 157
translate expressions between two ontologies for which there exists a mapping; they can query for definitions, or 158
relationships between terms or between ontologies; finally, they can request to find a shared ontology for 159
communication with another agent. Even if any agent requests one of the above services, the OA reserves the right to 160
refuse the request. 161
 162
The realization of this communication obviously needs an agreement on the language to communicate facts about 163
ontologies. This is described in section 3.2, Ontology Naming where the subsumed knowledge model and the FIPA 164
meta-ontology is specified. It describes the primitives, and normatively defines their names, used in the communication, 165
like concepts, parameters, relations, etc. It must be noticed that this specification is neutral in respect to the language 166
used to store and represent the ontology (for example, RDF, KIF, ODL, …), while it only specifies the language to 167
communicate about ontologies. 168
 169
Section 5.3, Interaction Protocol to Agree on a Shared Ontology specifies the interaction protocol that two agents can 170
use to agree on a shared ontology for communication. 171
 172
The document concludes with two informative annexes. Section 7, gives a clear definition of what is intended with the 173
term ontology and, in particular, what is the difference between a conceptualization, an ontology, and a knowledge 174
base. Section 8, lists an informative set of guidelines to help developers to define well-founded new ontologies. 175
 176

2.1 Rationale for Explicit Ontologies 177

The FIPA communication model defined in [FIPA00023] is based on the assumption that communicating agents share 178
an ontology of communication defining speech acts and protocols (see Figure 1). In order to have fruitful 179
communication, agents must also share an ontology of their domain of application. In an open environment, agents are 180
designed around various ontologies (either implicit or explicit). For allowing their communication, explicit ontologies are 181
however necessary, together with a standard mechanism to access and refer to them (such as an access protocol or a 182
naming space). 183
 184

Ontology

Agent A Agent B

Ontology QueryOntology Query

ACL Communication =
Ontology-Based Communication

 185
 186

Figure 1: Ontology-Based Communication Model 187
 188
Without explicit ontologies, agents need to share intrinsically the same ontology to be able to communicate and this is a 189
strong constraint in an open environment where agents, designed by different programmers or organizations, may enter 190
into communication. 191
 192
An explicit ontology is considered to be declaratively represented as opposed to implicitly, procedurally encoded. It can 193
be then considered as “a referring knowledge” and, as a consequence, could be outside the communicating agents; 194
managed by a dedicated ontology agent. 195

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

3

 196
As described in section 7, an ontology is not only a vocabulary but also contains explicit axioms to approximate 197
meaning, that is, to constrain the set of intended models. Explicit axioms allow validation of specifications, unambiguous 198
definition of vocabulary, automation of operations like classification and translation. 199
 200
Several benefits can be envisioned by having explicitly represented ontologies, such as enabling querying for concepts, 201
updating an ontology, reusing ontologies by extending or specializing existing ones, translation between different 202
ontologies, sharing through referring to ontology names and locations, etc. 203
 204

2.2 Benefits for Applications 205

There are many applications that benefit from having a dedicated agent that manages and controls access to a set of 206
explicit ontologies. 207
 208
In information retrieval applications, the size of some linguistic ontologies may prevent an agent from storing the 209
ontology in its address space, so that agents need to remotely access and refer to ontologies for disambiguation of user 210
queries, for using information about taxonomies of terms or thesauri to enhance the quality of retrieved results, etc. The 211
definition of a standard interface to access and query an ontology service can increase and simplify the interoperability 212
between different systems. 213
 214
Semantic integration of heterogeneous information sources in an open and dynamic environment, such as the Internet 215
or a digital library, may also benefit from an ontology service. There are already implementations [Bayardo96] that use 216
one domain ontology to integrate several information sources, managed by a dedicated agent, whilst still allowing each 217
source to use its private ontology. Every user can also have their own ontology depending on their preference, their role 218
in the domain or simply their known language. Every used ontology is a subset of the domain ontology or there exists a 219
map between it and the domain ontology; the knowledge about these relationships (subset and mapping) is usually 220
maintained by some ontology-dedicated agents. 221
 222
Some applications use machine-learning techniques to adaptively extend an ontology based on the interaction of the 223
user with the system. In this case, at the execution time, several user agents may compete or collaborate to request a 224
dedicated agent to modify an ontology. 225
 226

2.3 Sample Scenarios 227

2.3.1 Scenario 1 – Definition of Terms Querying 228

This scenario shows the usage of an Ontology Agent to access definition of terms when using large linguistic 229
ontologies: 230
 231
Let’s consider Agent B able to index pictures based on their captions and send them on a demand basis: 232
 233
1. Agent A, which for instance is a user interface agent, is willing to get pictures of diseased citrus for its user, who is a 234

farmer and wants to discover a diagnosis for his citrus trees. Agent A, then, requests Agent B, to send pictures of 235
diseased citrus by referring to a given domain ontology, for example, the farmer ontology. 236

 237
2. Agent B discovers that no pictures under the name citrus are available. Before sending the answer to Agent A, 238

Agent B queries the appropriate OA (where the farmer ontology resides) to obtain sub-species of citrus (which 239
may be also sub-species of the diseased property) within the given ontology. 240

 241
3. The OA answers Agent B, informing it that oranges and lemon are sub-species of citrus. 242
 243
4. Then, Agent B finds pictures of diseased lemon and diseased orange and sends them to the Agent A. 244
 245

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

4

5. The scenario might continue with the user, that is, the farmer, looking at the several pictures and finding a match 246
with the problem his trees have. When he has found the problem, he may then ask Agent A to find a diagnosis and 247
a cure for it. Even in this case, the service provided by the OA might be useful again. 248

 249
6. The existence of an explicit declarative ontology managed by an external agent, the OA, allows Agent B to 250

concentrate on its actual task of indexing and sending pictures rather than on the maintenance of the ontology itself. 251
Agent B may also be more lightweight as it is not necessary for it to encode all the ontology since relations and 252
definition of concepts can be accessed on demand by querying the OA. 253

 254
Even Agent A may need to access the same OA, for instance to explain to its user the type of diseased as in the figure. 255
 256

2.3.2 Scenario 2 – Shared Ontology Selection 257

Agent SP is the service provider for electronic commerce of a given merchant. It has simple behaviours referring to the 258
sell-products ontology. It has other more complex behaviours referring to the sell-wholesale-products 259
ontology. The complex behaviours are designed as extensions of the simple ones. The sell-wholesale-products 260
ontology is defined explicitly in an ontology server (for example, Ontolingua) as an extension of the sell-products 261
ontology. 262
 263
The ontology server is accessible by agents of a given FIPA compliant platform through an OA named OA1. Following 264
the FIPA ontologies naming scheme, these two ontologies are named as follows: sell-products and sell-265
wholesale-product. Both of these ontologies refer to the electronic commerce domain. 266
 267
Agent SP would like to sell products. It makes a call for proposal using a call-for-proposals (CFP) communicative act 268
(see [FIPA00042]); the content of this communicative act refers to the sell-wholesale-products ontology. 269
 270
Agent C is a customer. It has only simple behaviours referring to the sell-products ontology. Agent C does not 271
know the sell-wholesale-products ontology and as a consequence has no precise idea of the purpose of this 272
CFP. However Agent C believes that the CFP of Agent SP is interesting to it, for instance because: 273
 274
• it believes that all CFPs from Agent SP are interesting to it, or, 275

• a third party agent knowing the needs of Agent C and understanding this CFP has recommended Agent C to 276
answer this CFP, or, 277

• it has behaviour referring to the electronic commerce domain (that is at least the case in this example). 278

Following the CFP of Agent SP, three different protocols of interaction could be considered: 279
 280
1. Agent C queries Agent SP to know if other ontologies can be used in this CFP. Agent SP answers that the sell-281

products ontology can be used. If Agent C does not know this ontology (this general case does not apply in this 282
example), the process of interaction is repeated. 283

2. Agent C queries the DF to determine if it knows OAs providing access to electronic commerce domain. The DF 284
answers to Agent C with a list of OAs including OA1. Agent C queries all these OAs about ontologies related to the 285
sell-wholesale-products. OA1 informs Agent C that the sell-wholesale-products ontology is an 286
extension of sell-wholesale-products ontology. Agent C asks Agent SP if it can use the sell-products 287
ontology. 288

3. Agent C queries the DF to determine if it knows the address of OA1 which the DF gives back. Agent C queries OA1 289
about ontologies and OA1 informs Agent C that the sell-wholesale-products ontology is an extension of 290
sell-products ontology. Agent C asks Agent SP if it can use the sell-products ontology. 291

2.3.3 Scenario 3 – Equivalence Testing 292

In this scenario an agent has to check the logical equivalence of two ontologies: 293

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

5

 294
1. An ontology designer in US declares the car-product ontology and associated this to the ontology agent OA2, 295

which is referred within the OA2 under the name car-product, following the FIPA ontologies naming scheme. 296

2. The ontology designer declares a complete French translation of its car-product ontology to the ontology agent 297
OA1 in France as the voiture ontology. Moreover these two ontologies are declared equivalent to OA1. The exact 298
mapping is provided to OA1. 299

3. Agent A (in the US) requests OA2 to provide an ontology of domain cars which returns the ontology name car-300
product. 301

4. Agent A wants to communicate with Agent B (in France) about cars with the ontology car-product. Note that 302
agent Agent A does not know this ontology. 303

5. Agent A queries if OA1 is able to provide an ontology equivalent to car-product. If it is, OA1 returns voiture to 304
Agent A; 305

6. Agent A informs Agent B that these two ontologies voiture and car-product are equivalent and that OA1 can 306
be used as a translator. 307

7. The dialogue between Agent A and Agent B can then start. 308

2.3.4 Scenario 4 – Ontology Location 309

In this scenario, an Agent A wants to know the list of ontologies referring to the term car. The agent believes that such 310
an ontology exists because it has received a natural language request from a user including this term. However, it has 311
no idea of the kind of concepts underlying this symbol, and it would like to access its definition without any human 312
intervention. 313
 314
1. Agent A wants to know the list of ontologies referring to a given term. 315

2. Agent A queries the DF for the list of OAs available. 316

3. Agent A queries each OA for the list of ontologies that include the given term. 317

4. The OA queries all the ontologies that it is able to access, about an object, a property and a class labelled with the 318
given term. 319

2.3.5 Scenario 5 – Term Translation 320

This scenario gives a pragmatic example illustrating the "use of translation of terms" in a multi-agent context and it 321
involves the naming of terms. 322
 323
Consider a project integrating two legacy databases. Users of the integrated system want to continue seeing the 324
integrated databases in the terms they are used to, the terms of the legacy database they were using. The first 325
database contains information about the aircraft parts owned by the aircraft manufacturer; the second database 326
describes aircraft parts owned by the aircraft operator. 327
 328
In each database, an aircraft part has a name. However, one database calls it a name and the other calls it 329
nomenclature. In other words, name and nomenclature are based on the same concept definition (the name of a part). 330
 331
A query server answers queries from user agents (user interfaces and agents acting for users). The query server uses 332
a domain ontology that integrates the data source ontologies. The user interface is based on a user model with user 333
ontologies. This permits one user to specify and see part nomenclature in his user interface while another will see part 334
name. We translate terms to answer queries based on each user ontology, and we also translate queries for each 335
database (see Figure 2). 336

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

6

 337

DF

Agent A OA

Ontology
Server 1

Ontology
Server 2

Database 1 Database 2

 338
 339

Figure 2: Model of Scenario 5 340
 341

1. An agent, Agent A, wants to translate a given term from a first ontology into the corresponding term from a second 342
one. 343

2. Agent A queries the DF for an OA which supports the translation between these ontologies. 344

3. The DF returns the name of a given OA; this OA knows the format of the ontologies involved (XML, OKBC, etc.) 345
and has capabilities to make translation between these ones. 346

4. Agent A queries this OA. 347

5. The OA translates the requested term from Ontology Server 1 to Ontology Server 2 where Ontologies 1 and 2 348
contain the terms defined respectively in Databases 1 and 2. 349

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

7

3 Ontology Service Reference Model 350

Ontologies are stored at an ontology server. In general, several servers may exist with different interfaces and different 351
capabilities. The OA allows agents to discover ontologies and servers and to access their services in a unique way, that 352
is more suitable to the agent communication mechanism. Furthermore, it can implement extra functionalities such as a 353
translation service or it can bring to the agent community knowledge about relationships between the different 354
ontologies. This reference model given in Figure 3 does not preclude that in some particular implementations, the OA 355
might wrap directly one ontology server. 356

 357

Non-FIPA Components

FIPA Components

Agent 1

Message Transport Service

Ontology
Agent 2 Agent 2 DF

Ontology
Agent 1

Ontology
Server 2
(ODL)

Ontology
Server 1

(Ontolingua)

Ontology
Server 3
(XML)

Ontology
Designer

OQL HTTPOKBC

 358
 359

Figure 3: Ontology Service Reference Model 360
 361

The scope of this FIPA specification is ACL level communication between agents and not communication between the 362
OAs and the ontology servers (for example, OKBC, OQL or any other proprietary protocol). Therefore, a FIPA-363
compliant OA will have to be developed on a custom basis to support interfaces with non-FIPA compliant ontology 364
severs. 365
 366

3.1.1 Ontology Agent Services 367

The OA must be able to participate in a communication about the following tasks, possibly responding that it is not able 368
to execute these tasks: 369
 370
• helping a FIPA agent in selecting a shared (sub)ontology for communication, 371

• creating and updating an ontology, or only some terms of an ontology, 372

• translating expressions between different ontologies (different names with same meanings), 373

• responding to queries for relationships between terms or between ontologies, and, 374

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

8

• discovering public ontologies in order to access them. 375

Furthermore, the OA allows the Ontology Server to make its ontologies publicly available in the agent domain. 376
 377

3.2 Ontology Naming 378

Each ontology is stored at an ontology server. The OA registers the list of supported ontologies with the DF and within 379
an OA, each ontology is uniquely named, registered and identified by a logical name managed by the OA. It hides from 380
the agent community the physical name of the ontology, both the name of the server (for example, Ontolingua) and the 381
actual name of the ontology itself. The OA is only responsible for knowing about the mapping to the physical name, 382
while all ACL messages and references are assumed to refer directly to this ontology identifier1. 383
 384

3.3 Relationships Between Ontologies 385

In an open environment, agents may benefit, in some applications, from knowing the existence of some relationships 386
between ontologies, for instance to decide if and how to communicate with other agents. Even if in principle every agent 387
may believe such relationships, the ontology agent has the most adequate role in the community to know that. It can be 388
then queried for the value of such relationships and it can use that for translation or for facilitating the selection of a 389
shared ontology for agent communication. The following predicate must be used for this purpose: 390
 391
(ontol-relationship ?O1 ?O2 ?level) 392
 393
which is defined to be true when a relationship of level level exists between the two ontologies in the arguments O1 394
and O2. The argument level may assume one of the values specified in Table 12. 395
 396

Extension When O1 extends the ontology O2

Identical When the two ontologies O1 and O2 are identical

Equivalent When the two ontologies O1 and O2 are equivalent

Weakly-Translatable When the source ontology O1 is weakly translatable to
the target ontology O2

Strongly-Translatable When the source ontology O1 is strongly translatable to
the target ontology O2

Approx-Translatable When the source ontology O1 is approximately
translatable to the target ontology O2

 397
Table 1: Ontology Relationship Levels 398

 399

3.3.1 Extending Ontologies 400

It is common and good engineering practice to build a new ontology by extending or combining existing ones. The 401
extension level of relationship captures this reuse practice. 402
 403
When (ontol-relationship O1 O2 extension) holds, then the ontology O1 extends or includes the ontology 404
O2. Informally this means that all the symbols that are defined within the O2 ontology are found in the O1 ontology, with 405
the very important restriction that the properties expressed between the entities in the O2 ontology are conserved in the 406
O1 ontology. 407

1 Based on these assumptions, it might happen that two OAs register the same physical ontology with different logical names, or that two OAs
register the same logical name for two different physical ontologies. The assumption is here that the OAs are themselves responsible for
discovering such equivalence and exploiting this knowledge in the service they provide.
2 The problem of deciding if two logical theories (as ontologies in general are) have relationships to each other, is in general computationally very
difficult. For instance, it can quickly become undecidable if two ontologies are identical when the expressive power of the ontologies concerned is
high enough. Therefore, asserting that two ontologies have a relationship to each other as defined in this section, will often require manual
intervention.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

9

 408
This specification makes no distinction between extension and inclusion relationships between ontologies. 409

 410
Ontology 1

Fruit

LemonApple Orange

Ontology 2

Fruit

CitrusApple

Lemon Orange

 411
 412

Figure 4: Example Extension of an Ontology 413
 414

Example 1 (extension): In the Ontology O1 (see Figure 4) the class Fruit is split into the Apple, Lemon and Orange 415
classes. The ontology O2 extends O1 by inserting the class Citrus between the class Fruit and both classes Orange and 416
Lemon. In this case the predicate holds since all entities in O1 are in O2 and since all relations in O1 still hold. For 417
instance, in O1 Lemon is a Fruit, and in O2 Lemon is a Citrus and Citrus is a Fruit implies that Lemon is a Fruit. 418
 419
Example 2 (inclusion): O1 defines Cars, O2 defines Cars and Vans by reusing without any modification all classes 420
involved in the Cars class defined in O1. Once more (ontol-relationship O2 O1 extension) holds. 421
 422

3.3.2 Identical Ontologies 423

This level is used to assert that two ontologies O1 and O2 are identical. By identical, we mean that the vocabulary, the 424
axiomatization and the representation language used are physically identical, like are for instance two mirror copies of a 425
file. However two identical ontologies could be named and referred under different names3. 426
 427

3.3.3 Equivalently Ontologies 428

Two ontologies O1 and O2 are said to be equivalent whenever they share the same vocabulary and the same logical 429
axiomatization, but possibly are expressed using different representation languages (for instance, Ontolingua and 430
XML). 431
 432
If we consider a particular ontology server with given deduction capabilities, everything that is provable or deductible 433
from O1 will be provable from O2 and vice versa. Moreover, the following property holds: if O1 and O2 are equivalent 434
then O1 and O2 are strongly translatable in both ways. In this case only a mapping between the representation 435
languages is required4. 436
 437

3 It may be important to notice that two identical ontologies may still commit to different conceptualizations, since they may differ in the way their
axiomatizations reflect the intended models (see section 7, Informative Annex A — Ontologies and Conceptualizations). Consider for instance two
ontologies identical to O1, consisting only of the axioms that reflect the ISA relationships between kinds of fruit: one may commit to a
conceptualization where the instances of fruit classes are intended as solid things, while the other one may assume that fruits are amounts of fruit
stuff. As long as the commitments with respect to the object/stuff distinction are not made explicit, the two ontologies, although identical, may be
used by different applications for very different things. Recognising the different conceptualizations may not be a problem as long as the vocabulary
is the same, but it may lead to serious troubles in case of translatable ontologies, where a wrong ontology translation may be performed on the
basis of a mapping between the axiomatizations. This problem is in principle unavoidable, and can be limited only by resorting to a common top-
level ontology, used to make explicit the intended conceptualization without the need of detailed axiomatizations.
4 It must be noticed that equivalent ontologies may still be served by different ontology servers with different deduction capabilities. That means, in
turn, that equivalence between ontologies does not guarantee equivalence of results: what an agent can do or cannot do when using an ontology
does not only depend on the ontology but on the couple (ontology, ontology server).

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

10

3.3.4 Weakly Translatable Ontologies 438

This level relates two ontologies Osource and Odest when it is possible to translate from Osource to Odest, even if 439
with a possible loss of information. Odest is then supposed to share a subset of the vocabulary and axiomatization of 440
Osource. It means that some terms or relationships from Osource will be possibly simplified when translated to 441
Odest. It means also that some terms or relationships will not be translatable to Odest, because they do not appear in 442
the Odest axiomatizations. Nevertheless, a weak translation should not introduce any inconsistency. 443
 444
For example, let us consider the French (Osource) and English (Odest) simple ontologies on fruit such as (see Figure 445
5): 446
 447
• In Osource a Fruit is an Agrume or Pomme or Poire and an Agrume is either a Citron, an Orange or a 448

Pamplemousse. 449
 450
• In Odest a Fruit is either a Lemon, an Orange or an Apple. 451
 452
Osource is weakly translatable to Odest with the vocabulary mapping (Pomme Apple; Citron Lemon; Orange 453
Orange; Fruit Fruit) with a loss of information concerning Pamplemousse, Poire and the conceptualization of Agrume 454
as the subclass of Fruit containing Citron, Pamplemousse and Orange. Nevertheless after translation Lemons and 455
Oranges are still Fruits. 456
 457

Ontology French

Fruit

PommeArgume

Citron Orange

Poire

Pampelmousse

Ontology English

Fruit

LemonApple Orange

 458
 459

Figure 5: Example Weakly Translatable Ontologies 460
 461

3.3.5 Strongly Translatable Ontologies 462

An ontology Osource is said to be related with level Strongly-Translatable to ontology Odest if: 463
 464
1. the vocabulary of Osource can be totally translated to the vocabulary of Odest, 465
 466
2. the axiomatization of Osource holds in Odest, 467
 468
3. there is no loss of information from Osource to Odest, and, 469
 470
4. there is no introduction of inconsistency. 471
 472
However, the representation languages used by Osource and Odest can still be different. 473
 474
For example, let us consider the English (Osource) and French (Odest) ontologies, such as (see Figure 6): 475
 476
• In Osource a Fruit is a either a Citrus, an Apple or a Pear, and a Citrus is either a Lemon or an Orange. 477
 478
• In Odest a Fruit is an Agrume or a Pomme or a Poire, and an Agrume is either a Citron an Orange or a 479

Pamplemousse. 480

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

11

 481
Osource is Strongly Translatable to Odest with the vocabulary mapping (Apple Pomme; Lemon Citron; Orange 482
 Orange; Fruit Fruit, Pear Poire, Citrus Agrume). Moreover every property that holds in Osource holds in 483
Odest after translation. Thus this is an example of a strongly translatable predicate. The reverse translation, that is, 484
Odest to Osource is not strongly translatable since Pamplemousse is not defined in Osource. 485
 486

Ontology French

Fruit

PommeArgume

Citron Orange

Poire

Pampelmousse

Ontology English

Fruit

CitrusApple

Lemon Orange

Pear

 487
 488

Figure 6: Example of Strongly Translatable Ontologies 489
 490

3.3.6 Approximately Translatable Ontologies 491

This level is the less restrictive. Two ontologies Osource and Odest are said to be related with level Approx-492
Translatable if they are Weakly-Translatable with introduction of possible inconsistencies, for example, some 493
of the relations become no more valid and some constraints do not apply anymore. 494
 495
For example, let us consider two ontologies that refer to a term which has slightly different meanings according to the 496
context in which it is used. The two ontologies are respectively ingredients-for-chinese-cooking and 497
ingredients-for-european-cooking. In both ontologies, we consider the two following classes Parsley and 498
Pepper. The difference is that in the ingredients-for-chinese-cooking ontology, Coriander is classified as a 499
sort of Parsley, because its leaves are used and that in the ingredients-for-european-cooking ontology, 500
Coriander is classified as a sort of Pepper, because only its seeds (called “Chinese” pepper) are used. The term 501
Coriander enjoys different properties in the two ontologies, even if it refers to the same plant. 502
 503
If we consider a translation between these two ontologies, the translation of Coriander (in the ingredients-for-504
chinese-cooking ontology) by Coriander (in the ingredients-for-european-cooking ontology) can be useful 505
mainly because as said previously the term designates the same plant. Nevertheless, some of the properties expressed 506
in the ingredients-for-chinese-cooking ontology do not hold any more in the ingredients-for-507
european-cooking ontology and vice versa. 508
 509

3.3.7 General Properties 510

The following properties hold between level of relationships: 511
 512
• Strongly-Translatable Weakly-Translatable Approx-Translatable 513

• Equivalent (O1, O2) Strongly-Translatable (O1, O2) ∧ Strongly-Translatable (O2, O1) 514

• Identical Equivalent 515

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

12

3.4 Registration of the Ontology Agent with the DF 516

In order for an agent to advertise its willingness to provide a set of ontology services to an agent domain, it must 517
register with a DF (as described in [FIPA00023]). Of course, the DF is not responsible for ensuring the validity of the 518
provided service. 519
 520
As part of this registration process a number of constant values are introduced which universally identify the ontology 521
services. The service-description object registered with the DF must include the following parameters: 522
 523
• :type must be declared as a fipa-oa service, 524

• :ontology must include the constant FIPA-Ontol-Service-Ontology, which identifies the set of actions that 525
can be requested to be performed by an OA, and, 526

• :properties must include the set of supported ontologies: 527
 528
property (529
 :name supported-ontologies 530
 :value (set ontology-description)) 531
 532

In addition to the set of supported ontologies, the OA may also register its translation capabilities between different 533
ontologies (if it has any). Notice that the specification does not prevent non-OA agents to also have translation 534
capabilities. The translation capabilities may include ontology translation, language translation or both. The following 535
constant values must be used to register translation services: 536
 537
• :type parameter must be declared as a translation-service, 538

• :ontology must include the constant FIPA-Meta-Ontology, which identifies the set of actions that can be 539
requested to be performed by an OA, regarding translation services, and, 540

• :properties must include the set of available ontology translations: 541

property (542
 :name ontology-translation-types 543
 :value (set translation-description)) 544
 545
and/or the list of available language translation types: 546

 547
property (548
 :name language-translation-types 549
 :value (set translation-description)) 550
 551

The definitions for the objects ontology-description and translation-description are given in section 4, 552
Ontology Service Ontology. 553
 554
The following is an example of registration of an OA with the DF: 555
 556
(request 557
 :sender 558
 (agent-identifier 559
 :name oa@foo.com 560
 :addresses (sequence iiop://foo.com/acc)) 561
 :receiver (set 562
 (agent-identifier 563
 :name df@bar.com 564
 :addresses (sequence iiop://bar.com/acc))) 565
 :language FIPA-SL0 566
 :protocol FIPA-Request 567
 :ontology FIPA-Agent-Management 568
 :content 569

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

13

 (action 570
 (agent-identifier 571
 :name df@bar.com 572
 :addresses (sequence iiop://bar.com/acc)) 573
 (register 574
 (df-description 575
 :name 576
 (agent-identifier 577
 :name oa@foo.com 578
 :addresses (sequence iiop://foo.com/acc)) 579
 :services (set 580
 (service-description 581
 :name Serv_Name1 582
 :type fipa-oa 583
 :ontology (set FIPA-Ontol-Service-Ontology) 584
 :properties (set 585
 (property 586
 :name supported-ontologies 587
 :value (set 588
 (ontology-description 589
 :ontology-name FIPA-VPN-Provisioning 590
 :version "1.0" 591
 :source-languages (set XML) 592
 :domains (set Telecomms)) 593
 (ontology-description 594
 :ontology-name Product 595
 :source-languages (set KIF) 596
 :domains (set Commerce)))))) 597
 (service-description 598
 :name Serv_Name2 599
 :type translation-service 600
 :ontology (set FIPA-Ontol-Service-Ontology) 601
 :properties (set 602
 (property 603
 :name ontology-translation-types 604
 :value (set 605
 (translation-description 606
 :from FIPA-VPN-Provisioning 607
 :to Product 608
 :level Weakly-Translatable) 609
 (translation-description 610
 :from Product 611
 :to Italian-Product 612
 :level Strongly-Translatable))) 613
 (property 614
 :name language-translation-types 615
 :value (set 616
 (translation-description 617
 :from FIPA-SL 618
 :to KIF 619
 :level Weakly-Translatable) 620
 (translation-description 621
 :from OntoLingua 622
 :to LOOM 623
 :level Strongly-Translatable))))) 624
 :protocol FIPA-Request 625
 :ontology FIPA-Ontol-Service-Ontology)))) 626
 627

3.4.1 Querying the DF 628

The search action (see [FIPA00023] enables an agent to query the DF for available ontology related services, namely: 629
 630
• the list of registered OAs, 631

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

14

• the list of OAs that support ontologies in a given domain, 632

• the basic properties of a given ontology (for example, domain, source-language), and, 633

• the list of OAs that provide a specific translation service. 634

It is also possible for an agent to query a DF to establish what agents claim to understand a given ontology. The reply 635
could be a list of OA who offer such an ontology, the requesting agent can then use it intelligence to decide which 636
ontology service is wishes to use. 637
 638
For example, the following example describes the case where an agent (the pca-agent in the example) queries a DF 639
to establish what OA agents can support the FIPA-VPN-Provisioning ontology: 640
 641
(request 642
 :sender 643
 (agent-identifier 644
 :name pca-agent@foo.com 645
 :addresses (sequence iiop://foo.com/acc)) 646
 :receiver (set 647
 (agent-identifier 648
 :name df@bar.com 649
 :addresses (sequence iiop://bar.com/acc))) 650
 :language FIPA-SL0 651
 :protocol FIPA-Request 652
 :ontology FIPA-Agent-Management 653
 :reply-with search-123 654
 :content 655
 (action 656
 (agent-identifier 657
 :name df@bar.com 658
 :addresses (sequence iiop://bar.com/acc)) 659
 (search 660
 (df-agent-description 661
 :services (set 662
 (service-description 663
 :type fipa-oa 664
 :ontology (set FIPA-Ontol-Service-Ontology) 665
 :properties (set 666
 (property 667
 :name supported-ontologies 668
 :value (set 669
 (ontology-description 670
 :ontology-name FIPA-VPN-Provisioning))))))))) 671
 672
The DF responds listing the details of the appropriate OAs registered: 673
 674
(inform 675
 :sender 676
 (agent-identifier 677
 :name df@bar.com 678
 :addresses (sequence iiop://bar.com/acc)) 679
 :receiver (set 680
 (agent-identifier 681
 :name pca-agent@foo.com 682
 :addresses (sequence iiop://foo.com/acc))) 683
 :language FIPA-SL0 684
 :protocol FIPA-Request 685
 :ontology FIPA-Agent-Management 686
 :in-reply-to search-123 687
 :content 688
 (result 689
 (action 690

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

15

 (agent-identifier 691
 :name df@bar.com 692
 :addresses (sequence iiop://bar.com/acc)) 693
 (search 694
 (df-agent-description 695
 :name 696
 (agent-identifier 697
 :name oa@foo.com 698
 :addresses (sequence iiop://foo.com/acc)) 699
 :type fipa-oa 700
 :services (set 701
 (service-description 702
 :name Serv_Name1 703
 :type fipa-oa 704
 :ontology (set FIPA-Ontol-Service-Ontology) 705
 :properties (set 706
 (property 707
 :name supported-ontologies 708
 :value (set 709
 (ontology-description 710
 :ontology-name FIPA-VPN-Provisioning 711
 :source-languages (set XML) 712
 :domains (set Telecoms)) 713
 (ontology-description 714
 :ontology-name product 715
 :source-languages (set KIF) 716
 :domains (set Commerce)))))) 717
 (service-description 718
 :type translation-service 719
 :ontology (set FIPA-Ontol-Service-Ontology) 720
 :name Serv_Name2 721
 :properties (set 722
 (property 723
 :name ontology-translation-types 724
 :value (set 725
 (translation-description 726
 :from FIPA-VPN-Provisioning 727
 :to Product 728
 :level Weakly-Translatable) 729
 (translation-description 730
 :from Product 731
 :to Italian-Product 732
 :level Strongly-Translatable))) 733
 (property 734
 :name language-translation-types 735
 :value (set 736
 (translation description 737
 :from FIPA-SL 738
 :to KIF 739
 :level Weakly-Translatable) 740
 (translation-description 741
 :from Ontolingua 742
 :to LOOM 743
 :level Strongly-Translatable)))))) 744
 :protocol FIPA-Request) 745
 :ontology FIPA-Ontol-Service-Ontology))))) 746
 747

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

16

4 Ontology Service Ontology 748

4.1 Object Descriptions 749

This section describes a set of frames, that represent the classes of objects in the domain of discourse within the 750
framework of the FIPA-Ontol-Service-Ontology ontology. 751
 752
The following terms are used to describe the objects of the domain: 753
 754
• Frame. This is the mandatory name of this entity, that must be used to represent each instance of this class. 755
 756
• Ontology. This is the name of the ontology, whose domain of discourse includes the parameters described in the 757

table. 758
 759
• Parameter. This is the mandatory name of a parameter of this frame. 760
 761
• Description. This is a natural language description of the semantics of each parameter. 762
 763
• Presence. This indicates whether each parameter is mandatory or optional. 764
 765
• Type. This is the type of the values of the parameter: Integer, Word, String, URL, Term, Set or Sequence. 766
 767
• Reserved Values. This is a list of FIPA-defined constants that can assume values for this parameter. 768
 769

4.1.1 Ontology Description 770

Frame
Ontology

ontology-description
FIPA-Ontol-Service-Ontology

Parameter Description Presence Type Reserved Values
ontology-
name

The symbolic name of the ontology. Mandatory Word

version The version of the ontology. String
source-
languages

A list of languages in which the
ontology is represented,

Mandatory Set of String

domains A list of application domains in which
the ontology is applicable.

Mandatory Set of String

 771

4.1.2 Translation Description 772

Frame
Ontology

translation-description
FIPA-Ontol-Service-Ontology

Parameter Description Presence Type Reserved Values
from The representation of the source

ontology or language.
Mandatory Word

to The representation of the destination
ontology or language.

Mandatory Word

level The translation relationship between
the source and destination ontologies
or languages.

Mandatory String Equivalent
Weakly-Translatable
Strongly-Translatable
Approx-Translatable

 773

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

17

5 Meta Ontology 774

One of the goals of this specification is to allow agents to talk about and manipulate knowledge, for instance to query for 775
the definition of a concept or to define a new concept. A standard meta-ontology and knowledge model is necessary for 776
this purpose, which describes the primitives used by a knowledge representation language, like concepts, parameters, 777
relations, etc. 778
 779
FIPA adopts for its specification the knowledge model of [OKBC], which is hereafter defined and referred with the 780
reserved constant FIPA-Meta-Ontology. The adopted knowledge model supports an object-oriented representation 781
of knowledge and provides a set of representational constructs commonly found in object-oriented knowledge 782
representation systems. 783
 784
It must be noticed that the adoption of this meta-ontology does not prevent the usage of whatever knowledge 785
representation language a designer wants to use. Instead, for a FIPA-compliant agent, this is mandated and serves the 786
purpose of the interlingua for knowledge that is being communicated, that is knowledge obtained from or provided to an 787
OA must be expressed in this knowledge model. It is left to agents, then, the responsibility to translate knowledge from 788
the actual knowledge representation language into and out of this interlingua, as needed. 789
 790
For an accurate understanding of this knowledge model, the reader should directly refer to [OKBC]. However, for quick 791
reference and to simplify the reading of this document, the following section is an integral reproduction of Chapter 2 of 792
[OKBC]. 793
 794

5.1 The OKBC Knowledge Model 795
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> 796
<!--Converted with LaTeX2HTML 98.1p1 release (March 2nd, 1998) 797
 originally by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds 798
 * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan 799
 * with significant contributions from: 800
 Jens Lippmann, Marek Rouchal, Martin Wilck and others 801
--> 802
 803
 804
The Open Knowledge Base Connectivity provides operations for manipulating knowledge expressed in an implicit 805
representation formalism called the OKBC Knowledge Model, which we specify in this chapter. The OKBC Knowledge 806
Model supports an object-oriented representation of knowledge and provides a set of representational constructs 807
commonly found in object-oriented knowledge representation systems (KRSs) [4]. Knowledge obtained from an KRS 808
using OKBC or provided to an KRS using OKBC is assumed in the specification of the OKBC operations to be 809
expressed in the Knowledge Model. The OKBC Knowledge Model therefore serves as an implicit interlingua for 810
knowledge that is being communicated using OKBC, and systems that use OKBC translate knowledge into and out of 811
that interlingua as needed. 812
 813
The OKBC Knowledge Model includes constants, frames, slots, facets, classes, individuals, and knowledge bases. We 814
describe each of these constructs in the sections below. To provide a precise and succinct description of the OKBC 815
Knowledge Model, we use the Knowledge Interchange Format (KIF) [2] as a formal specification language. KIF is a 816
first-order predicate logic language with set theory, and has a linear prefix syntax. 817
 818
Constants 819

The OKBC Knowledge Model assumes a universe of discourse consisting of all entities about which knowledge is to be 820
expressed. Each OKBC knowledge base may have a different universe of discourse. However, OKBC assumes that the 821
universe of discourse always includes all constants of the following basic types: 822
 823
• integers, 824

• floating point numbers, 825

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

18

• strings, 826

• symbols, 827

• lists, and, 828

• classes. 829

Classes are sets of entities5, and all sets of entities are considered to be classes. OKBC also assumes that the domain 830
of discourse includes the logical constants true and false. 831
 832
Frames, Own Slots, and Own Facets 833

A frame is a primitive object that represents an entity in the domain of discourse. Formally, a frame corresponds to a 834
KIF constant. A frame that represents a class is called a class frame, and a frame that represents an individual is called 835
an individual frame. 836
 837
A frame has associated with it a set of own slots, and each own slot of a frame has associated with it a set of entities 838
called slot values. Formally, a slot is a binary relation, and each value V of an own slot S of a frame F represents the 839
assertion that the relation S holds for the entity represented by F and the entity represented by V (i.e., (S F V)6). For 840
example, the assertion that Fred's favorite foods are potato chips and ice cream could be represented by the own slot 841
Favorite-Food of the frame Fred having as values the frame Potato-Chips and the string "ice cream". 842
 843
An own slot of a frame has associated with it a set of own facets, and each own facet of a slot of a frame has 844
associated with it a set of entities called facet values. Formally, a facet is a ternary relation, and each value V of own 845
facet Fa of slot S of frame Fr represents the assertion that the relation Fa holds for the relation S, the entity represented 846
by Fr, and the entity represented by V (i.e., (Fa S Fr V)). For example, the assertion that the favorite foods of Fred 847
must be edible foods could be represented by the facet :VALUE-TYPE of the Favorite-Food slot of the Fred frame 848
having the value Edible-Food. 849
 850
Relations may optionally be entities in the domain of discourse and therefore representable by frames. Thus, a slot or a 851
facet may be represented by a frame. Such a frame describes the properties of the relation represented by the slot or 852
facet. A frame representing a slot is called a slot frame, and a frame representing a facet is called a facet frame. 853
 854
Classes and Individuals 855

A class is a set of entities. Each of the entities in a class is said to be an instance of the class. An entity can be an 856
instance of multiple classes, which are called its types. A class can be an instance of a class. A class which has 857
instances that are themselves classes is called a meta-class. 858
 859
Entities that are not classes are referred to as individuals. Thus, the domain of discourse consists of individuals and 860
classes. The unary relation class is true if and only if its argument is a class and the unary relation individual is 861
true if and only if its argument is an individual. The following axiom holds:7 862
 863
 (<=> (class ?X) (not (individual ?X))) 864
 865
The class membership relation (called instance-of) that holds between an instance and a class is a binary relation that 866
maps entities to classes. A class is considered to be a unary relation that is true for each instance of the class. That is:8 867
 868
 (<=> (holds ?C ?I) (instance-of ?I ?C)) 869
 870

5 We use the term class synonymously with the term concept as used in the description logic community.
6 KIF syntax note: Relational sentences in KIF have the form (<relation name> <argument>*)
7 Notes on KIF syntax: Names whose first character is ? are variables. If no explicit quantifier is specified, variables are assumed to be universally
quantified. <=> means "if and only if".
8 Note on KIF syntax: holds means "relation is true for". One must use the form (holds ?C ?I) rather than (?C ?I) when the relation is a
variable because KIF has a first-order logic syntax and therefore does not allow a variable in the first position of a relational sentence.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

19

The relation type-of is defined as the inverse of relation instance-of. That is: 871
 872
 (<=> (type-of ?C ?I) (instance-of ?I ?C)) 873
 874
The subclass-of relation for classes is defined in terms of the relation instance-of, as follows. A class Csub is a 875
subclass of class Csuper if and only if all instances of Csub are also instances of Csuper. That is9: 876
 877
 (<=> (subclass-of ?Csub ?Csuper) 878
 (forall ?I (=> (instance-of ?I ?Csub) 879
 (instance-of ?I ?Csuper)))) 880
 881
Note that this definition implies that subclass-of is transitive. (I.e., If A is a subclass of B and B is a subclass of C, 882
then A is a subclass of C.) 883
 884
The relation superclass-of is defined as the inverse of the relation subclass-of. That is: 885
 886
 (<=> (superclass-of ?Csuper ?Csub) (subclass-of ?Csub ?Csuper)) 887
 888
Class Frames, Template Slots and Template Facets 889

A class frame has associated with it a collection of template slots that describe own slot values considered to hold for 890
each instance of the class represented by the frame. The values of template slots are said to inherit to the subclasses 891
and to the instances of a class. Formally, each value V of a template slot S of a class frame C represents the assertion 892
that the relation template-slot-value holds for the relation S, the class represented by C, and the entity represented by V 893
(i.e., (template-slot-value S C V)). That assertion, in turn, implies that the relation S holds between each 894
instance I of class C and value V (i.e., (S I V)). It also implies that the relation template-slot-value holds for the 895
relation S, each subclass Csub of class C, and the entity represented by V (i.e., (template-slot-value S Csub 896
V)). That is, the following slot value inheritance axiom holds for the relation template-slot-value: 897
 898
 (=> (template-slot-value ?S ?C ?V) 899
 (and (=> (instance-of ?I ?C) (holds ?S ?I ?V)) 900
 (=> (subclass-of ?Csub ?C) 901
 (template-slot-value ?S ?Csub ?V)))) 902
 903
Thus, the values of a template slot are inherited to subclasses as values of the same template slot and to instances as 904
values of the corresponding own slot. For example, the assertion that the gender of all female persons is female could 905
be represented by template slot Gender of class frame Female-Person having the value Female. Then, if we 906
created an instance of Female-Person called Mary, Female would be a value of the own slot Gender of Mary. 907
 908
A template slot of a class frame has associated with it a collection of template facets that describe own facet values 909
considered to hold for the corresponding own slot of each instance of the class represented by the class frame. As with 910
the values of template slots, the values of template facets are said to inherit to the subclasses and instances of a class. 911
 912
Formally, each value V of a template facet F of a template slot S of a class frame C represents the assertion that the 913
relation template-facet-value holds for the relations F and S, the class represented by C, and the entity represented by 914
V (i.e., (template-facet-value F S C V)). That assertion, in turn, implies that the relation F holds for relation S, 915
each instance I of class C, and value V (i.e., (F S I V)). It also implies that the relation template-facet-value 916
holds for the relations S and F, each subclass Csub of class C, and the entity represented by V (i.e., (template-917
facet-value F S Csub V)). 918
 919
In general, the following facet value inheritance axiom holds for the relation template-facet-value: 920
 921
 (=> (template-facet-value ?F ?S ?C ?V) 922
 (and (=> (instance-of ?I ?C) (holds ?F ?S ?I ?V)) 923
 (=> (subclass-of ?Csub ?C) 924
 (template-facet-value ?F ?S ?Csub ?V)))) 925
 926

9 Note on KIF syntax: => means "implies".

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

20

Thus, the values of a template facet are inherited to subclasses as values of the same template facet and to instances 927
as values of the corresponding own facet. 928
 929
Note that template slot values and template facet values necessarily inherit from a class to its subclasses and 930
instances. Default values and default inheritance are specified separately. 931
 932
Primitive and Non-Primitive Classes 933

Classes are considered to be either primitive or non-primitive by OKBC. The template slot values and template facet 934
values associated with a non-primitive class are considered to specify a set of necessary and sufficient conditions for 935
being an instance of the class. For example, the class Triangle could be a non-primitive class whose template slots 936
and facets specify three-sided polygons. All triangles are necessarily three-sided polygons, and knowing that an entity 937
is a three-sided polygon is sufficient to conclude that the entity is a triangle. 938
 939
The template slot values and template facet values associated with a primitive class are considered to specify only a set 940
of necessary conditions for an instance of the class. For example, all classes of "natural kinds" - such as Horse and 941
Building - are primitive concepts. A KB may specify many properties of horses and buildings, but will typically not 942
contain sufficient conditions for concluding that an entity is a horse or building. 943
Formally: 944
 945
 (=> (and (class ?C) (not (primitive ?C))) 946
 (=> (and (=> (template-slot-value ?S ?C ?V) (holds ?S ?I ?V)) 947
 (=> (template-facet-value ?F ?S ?C ?V) 948
 (holds ?F ?S ?I ?V))) 949
 (instance-of ?I ?C))) 950
 951
Associating Slots and Facets with Frames 952

Each frame has associated with it a collection of slots, and each frame-slot pair has associated with it a collection of 953
facets. A facet is considered to be associated with a frame-slot pair if the facet has a value for the slot at the frame. A 954
slot is considered to be associated with a frame if the slot has a value at that frame or there is a facet that is associated 955
with the slot at the frame. For example, if the template facet :NUMERIC-MINIMUM of template slot Age of frame 956
Person had a value 0, then facet :NUMERIC-MINIMUM would be associated with the frame Person slot Age pair and 957
the slot Age would be associated with the frame Person. In addition, OKBC contains operations for explicitly 958
associating slots with frames and associating facets with frame-slot pairs, even though there are no values for the slots 959
or facets at the frame. 960
 961
We formalize the association of slots with frames and facets with frame-slot pairs by defining the relations slot-of, 962
template-slot-of, facet-of, and template-facet-of as follows: 963
 964
 (=> (exists ?V (holds ?Fa ?S ?F ?V)) (facet-of ?Fa ?S ?F)) 965
 966
 (=> (exists ?V (template-facet-value ?Fa ?S ?C ?V)) 967
 (template-facet-of ?Fa ?S ?C)) 968
 969
 (=> (or (exists ?V (holds ?S ?F ?V)) 970
 (exists ?Fa (facet-of ?Fa ?S ?F))) 971
 (slot-of ?S ?F)) 972
 973
 (=> (or (exists ?V (template-slot-value ?S ?C ?V)) 974
 (exists ?Fa (template-facet-of ?Fa ?S ?C))) 975
 (template-slot-of ?S ?C)) 976
 977
So, in the example given above, the following sentences would be true: (template-slot-of Age Person) and 978
(template-facet-of :NUMERIC-MINIMUM Age Person). 979
 980

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

21

As with template facet values and template slot values, the template-slot-of and template-facet-of relations 981
inherit from a class to its subclasses and from a class to its instances as the slot-of and facet-of relations. That 982
is, the following slot-of inheritance axioms hold. 983
 984
 (=> (template-slot-of ?S ?C) 985
 (and (=> (instance-of ?I ?C) (slot-of ?S ?I)) 986
 (=> (subclass-of ?Csub ?C) (template-slot-of ?S ?Csub)))) 987
 988
 (=> (template-facet-of ?Fa ?S ?C) 989
 (and (=> (instance-of ?I ?C) (facet-of ?Fa ?S ?I)) 990
 (=> (subclass-of ?Csub ?C) 991
 (template-facet-of ?Fa ?S ?Csub)))) 992
 993
Collection Types for Slot and Facet Values 994

OKBC allows multiple values of a slot or facet to be interpreted as a collection type other than a set. The protocol 995
recognizes three collection types: set, bag, and list. A bag is an unordered collection with possibly multiple occurrences 996
of the same value in the collection. A list is an ordered bag. 997
 998
The OKBC Knowledge Model considers multiple slot and facet values to be sets throughout because of the lack of a 999
suitable formal interpretation for (1) multiple slot or facet values treated as bags or lists, (2) the ordering of values in lists 1000
of values that result from multiple inheritance, and (3) the multiple occurrence of values in bags that result from multiple 1001
inheritance. In addition, the protocol itself makes no commitment as to how values expressed in collection types other 1002
than set are combined during inheritance. Thus, OKBC guarantees that multiple slot and facet values of a frame stored 1003
as a bag or a list are retrievable as an equivalent bag or list at that frame. However, when the values are inherited to a 1004
subclass or instance, no guarantees are provided regarding the ordering of values for lists or the repeating of multiple 1005
occurrences of values for bags. The collection types supported by a KRS can be specified by a behavior and the 1006
collection type of a slot of a specific frame can be specified by using the :COLLECTION-TYPE facet. 1007
 1008
Default Values 1009

The OKBC knowledge model includes a simple provision for default values for slots and facets. Template slots and 1010
template facets have a set of default values associated with them. Intuitively, these default values inherit to instances 1011
unless the inherited values are logically inconsistent with other assertions in the KB, the values have been removed at 1012
the instance, or the default values have been explicitly overridden by other default values. OKBC does not require a 1013
KRS to be able to determine the logical consistency of a KB, nor does it provide a means of explicitly overriding default 1014
values. Instead, OKBC leaves the inheritance of default values unspecified. That is, no requirements are imposed on 1015
the relationship between default values of template slots and facets and the values of the corresponding own slots and 1016
facets. The default values on a template slot or template facet are simply available to the KRS to use in whatever way it 1017
chooses when determining the values of own slots and facets. OKBC guarantees that, unless the value of the 1018
:default behaviour is :none, default values for a template slot or template facet asserted at a class frame will be 1019
retrievable at that frame. However, no guarantees are made as to how or whether the default values are inherited to a 1020
subclass or instance. 1021
 1022
Knowledge Bases 1023

A knowledge base (KB) is a collection of classes, individuals, frames, slots, slot values, facets, facet values, frame-slot 1024
associations, and frame-slot-facet associations. KBs are considered to be entities in the universe of discourse and are 1025
represented by frames. All frames reside in some KB. The frames representing KBs are considered to reside in a 1026
distinguished KB called the meta-kb, which is accessible to OKBC applications. 1027
 1028
Standard Classes, Facets, and Slots 1029

The OKBC Knowledge Model includes a collection of classes, facets, and slots with specified names and semantics. It 1030
is not required that any of these standard classes, facets, or slots be represented in any given KB, but if they are, they 1031
must satisfy the semantics specified here. 1032
 1033

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

22

The purpose of these standard names is to allow for KRS- and KB-independent canonical names for frequently used 1034
classes, facets, and slots. The canonical names are needed because an application cannot in general embed literal 1035
references to frames in a KB and still be portable. This mechanism enables such literal references to be used without 1036
compromising portability. 1037
 1038
Classes 1039

Whether the classes described in this section are actually present in a KB or not, OKBC guarantees that all of these 1040
class names are valid values for the :VALUE-TYPE facet. 1041
 1042
:THING class 1043
:THING is the root of the class hierarchy for a KB, meaning that :THING is the superclass of every class in every KB. 1044
 1045
:CLASS class 1046
:CLASS is the class of all classes. That is, every entity that is a class is an instance of :CLASS. 1047
 1048
:INDIVIDUAL class 1049
:INDIVIDUAL is the class of all entities that are not classes. That is, every entity that is not a class is an instance of 1050
:INDIVIDUAL. 1051
 1052
:NUMBER class 1053
:NUMBER is the class of all numbers. OKBC makes no guarantees about the precision of numbers. If precision is an 1054
issue for an application, then the application is responsible for maintaining and validating the format of numerical values 1055
of slots and facets. :NUMBER is a subclass of :INDIVIDUAL. 1056
 1057
:INTEGER class 1058
:INTEGER is the class of all integers and is a subclass of :NUMBER. As with numbers in general, OKBC makes no 1059
guarantees about the precision of integers. 1060
 1061
:STRING class 1062
:STRING is the class of all text strings. :STRING is a subclass of :INDIVIDUAL. 1063
 1064
:SYMBOL class 1065
:SYMBOL is the class of all symbols. :SYMBOL is a subclass of :SEXPR. 1066
 1067
:LIST class 1068
:LIST is the class of all lists. :LIST is a subclass of :INDIVIDUAL. 1069
 1070
Facets 1071

The standard facet names in OKBC have been derived from the Knowledge Representation System Specification 1072
(KRSS) [6] and the Ontolingua Frame Ontology. KRSS is a common denominator for description logic systems such as 1073
LOOM[5], CLASSIC [1], and BACK [7]. The Ontolingua Frame Ontology defines a frame language as an extension to 1074
KIF. KIF plus the Ontolingua Frame Ontology is the representation language used in Stanford University's Ontolingua 1075
System [3]. Both KRSS and Ontolingua were developed as part of DARPA's Knowledge Sharing Effort. 1076
 1077
:VALUE-TYPE facet 1078
The :VALUE-TYPE facet specifies a type restriction on the values of a slot of a frame. Each value of the :VALUE-TYPE 1079
facet denotes a class. A value C for facet :VALUE-TYPE of slot S of frame F means that every value of slot S of frame 1080
F must be an instance of the class C. That is: 1081
 1082
 (=> (:VALUE-TYPE ?S ?F ?C) 1083
 (and (class ?C) 1084
 (=> (holds ?S ?F ?V) (instance-of ?V ?C)))) 1085
 1086
 (=> (template-facet-value :VALUE-TYPE ?S ?F ?C) 1087
 (and (class ?C) 1088

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

23

 (=> (template-slot-value ?S ?F ?V) (instance-of ?V ?C)))) 1089
 1090
The first axiom provides the semantics of the :VALUE-TYPE facet for own slots and the second provides the semantics 1091
for template slots. Note that if the :VALUE-TYPE facet has multiple values for a slot S of a frame F, then the values of 1092
slot S of frame F must be an instance of every class denoted by the values of :VALUE-TYPE. 1093
 1094
A value for :VALUE-TYPE can be a KIF term of the following form: 1095
 1096
 <value-type-expr> ::= (union <OKBC-class>*) | (set-of <OKBC-value>*) | 1097
 OKBC-class 1098
 1099
A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class described in 1100
Section 2.10.1. A OKBC-value is any entity. The union expression allows the specification of a disjunction of classes 1101
(e.g., either a dog or a cat), and the set-of expression allows the specification of an explicitly enumerated set of 1102
possible values for the slot (e.g., either Clyde, Fred, or Robert). 1103
 1104
:INVERSE facet 1105
The :INVERSE facet of a slot of a frame specifies inverses for that slot for the values of the slot of the frame. Each 1106
value of this facet is a slot. A value S2 for facet :INVERSE of slot S1 of frame F means that if V is a value of S1 of F, 1107
then F is a value of S2 of V. That is: 1108
 1109
 (=> (:INVERSE ?S1 ?F ?S2) 1110
 (and (:SLOT ?S2) 1111
 (=> (holds ?S1 ?F ?V) (holds ?S2 ?V ?F)))) 1112
 1113
 (=> (template-facet-value :INVERSE ?S1 ?F ?S2) 1114
 (and (:SLOT ?S2) 1115
 (=> (template-slot-value ?S1 ?F ?V) 1116
 (template-slot-value ?S2 ?V ?F)))) 1117
 1118
:CARDINALITY facet 1119
The :CARDINALITY facet specifies the exact number of values that may be asserted for a slot on a frame. The value 1120
of this facet must be a nonnegative integer. A value N for facet :CARDINALITY on slot S on frame F means that slot S 1121
on frame F has N values. That is10: 1122
 1123
 (=> (:CARDINALITY ?S ?F ?N) 1124
 (= (cardinality (setofall ?V (holds ?S ?F ?V))) ?N)) 1125
 1126
 (=> (template-facet-value :CARDINALITY ?S ?F ?C) 1127
 (=< (cardinality (setofall ?V (template-slot-value ?S ?F ?V)) 1128
 ?N))) 1129
 1130
For example, one could represent the assertion that Fred has exactly four brothers by asserting 4 as the value of the 1131
:CARDINALITY own facet of the Brother own slot of frame Fred. Note that all the values for slot S of frame F need 1132
not be known in the KB. That is, a KB could use the :CARDINALITY facet to specify that Fred has 4 brothers without 1133
knowing who the brothers are and therefore without providing values for Fred's Brother slot. 1134
 1135
Also, note that a value for :CARDINALITY as a template facet of a template slot of a class only constrains the 1136
maximum number of values of that template slot of that class, since the corresponding own slot of each instance of the 1137
class may inherit values from multiple classes and have locally asserted values. 1138
 1139
:MAXIMUM-CARDINALITY facet 1140
The :MAXIMUM-CARDINALITY facet specifies the maximum number of values that may be asserted for a slot of a 1141
frame. Each value of this facet must be a nonnegative integer. A value N for facet MAXIMUM-CARDINALITY of slot S of 1142
frame F means that slot S of frame F can have at most N values. That is: 1143

10 cardinality is a unary function whose argument is a finite set and whose value is the number of elements in the set. setofall is a set-valued
term expression in KIF that takes a variable as a first argument and a sentence containing that variable as a second argument. The value of
setofall is the set of all values of the variable for which the sentence is true. Note on KIF syntax: =< means "less than or equal".

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

24

 1144
 (=> (:MAXIMUM-CARDINALITY ?S ?F ?N) 1145
 (=< (cardinality (setofall ?V (holds ?S ?F ?V))) ?N)) 1146
 1147
 (=> (template-facet-value :MAXIMUM-CARDINALITY ?S ?F ?C) 1148
 (=< (cardinality (setofall ?V (template-slot-value ?S ?F ?V)) 1149
 ?N))) 1150
 1151
Note that if facet :MAXIMUM-CARDINALITY of a slot S of a frame F has multiple values N1,…,Nk, then S in F can have 1152
at most (min N1 … Nk) values. Also, it is appropriate for a value for :MAXIMUM-CARDINALITY as a template facet 1153
of a template slot of a class to constrain the number of values of that template slot of that class as well as the number of 1154
values of the corresponding own slot of each instance of that class since an excess of values for a template slot of a 1155
class will cause an excess of values for the corresponding own slot of each instance of the class. 1156
 1157
:MINIMUM-CARDINALITY facet 1158
The :MINIMUM-CARDINALITY facet specifies the minimum number of values that may be asserted for a slot of a 1159
frame. Each value of this facet must be a nonnegative integer. A value N for facet MINIMUM-CARDINALITY of slot S of 1160
frame F means that slot S of frame F has at least N values. That is11: 1161
 1162
 (=> (:MINIMUM-CARDINALITY ?S ?F ?N) 1163
 (>= (cardinality (setofall ?V (holds ?S ?F ?V))) ?N)) 1164
 1165
Note that if facet :MINIMUM-CARDINALITY of a slot S of a frame F has multiple values N1,…,Nk, then S of F has at 1166
least (max N1 … Nk) values. Also, as is the case with the :CARDINALITY facet, all the values for slot S of frame F 1167
do not need be known in the KB. 1168
 1169
Note that a value for :MINIMUM-CARDINALITY as a template facet of a template slot of a class does not constrain the 1170
number of values of that template slot of that class, since the corresponding own slot of each instance of the class may 1171
inherit values from multiple classes and have locally asserted values. Instead, the value for the template facet 1172
:MINIMUM-CARDINALITY constrains only the number of values of the corresponding own slot of each instance of that 1173
class, as specified by the axiom. 1174
 1175
:SAME-VALUES facet 1176
The :SAME-VALUES facet specifies that a slot of a frame has the same values as other slots of that frame or as the 1177
values specified by slot chains starting at that frame. Each value of this facet is either a slot or a slot chain. A value S2 1178
for facet :SAME-VALUES of slot S1 of frame F, where S2 is a slot, means that the set of values of slot S1 of F is equal 1179
to the set of values of slot S2 of F. That is: 1180
 1181
 (=> (:SAME-VALUES ?S1 ?F ?S2) 1182
 (= (setofall ?V (holds ?S1 ?F ?V)) 1183
 (setofall ?V (holds ?S2 ?F ?V)))) 1184
 1185
A slot chain is a list of slots that specifies a nesting of slots. That is, the values of the slot chain S1, … ,Sn of frame F 1186
are the values of the Sn slot of the values of the Sn-1 slot of … of the values of the S1 slot in F. For example, the values 1187
of the slot chain (parent brother) of Fred are the brothers of the parents of Fred. Formally, we define the values 1188
of a slot chain recursively as follows: Vn is a value of slot chain S1,…,Sn of frame F if there is a value V1 of slot S1 of F 1189
such that Vn is a value of slot chain S2,…,Sn of frame V1. That is12: 1190
 1191
 (<=> (slot-chain-value (listof ?S1 ?S2 @Sn) ?F ?Vn) 1192
 (exists ?V1 (and (holds ?S1 ?F ?V1) 1193
 (slot-chain-value (listof ?S2 @Sn) ?V1 ?Vn)))) 1194
 1195
 (<=> (slot-chain-value (listof ?S) ?F ?V) (holds ?S ?F ?V)) 1196
 1197

11 Note on KIF synatx: >= means "greater than or equal".
12 Note on KIF syntax: listof is a function whose value is a list of its arguments. Names whose first character is @ are sequence variables that
bind to a sequence of 0 or more entities. For example, the expression (F @X) binds to (F 14 23) and in general to any list whose first element is
F.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

25

A value (S1 … Sn) for facet :SAME-VALUES of slot S of frame F means that the set of values of slot S of F is equal to 1198
the set of values of slot chain (S1 … Sn) of F. That is, 1199
 1200
 (=> (:SAME-VALUES ?S ?F (listof @Sn)) 1201
 (= (setofall ?V (holds ?S ?F ?V)) 1202
 (setofall ?V (slot-chain-value (listof @Sn) ?F ?V)))) 1203
 1204
For example, one could assert that a person's uncles are the brothers of their parents by putting the value (parent 1205
brother) on the template facet :SAME-VALUES of the Uncle slot of class Person. 1206
 1207
:NOT-SAME-VALUES facet 1208
The :NOT-SAME-VALUES facet specifies that a slot of a frame does not have the same values as other slots of that 1209
frame or as the values specified by slot chains starting at that frame. Each value of this facet is either a slot or a slot 1210
chain. A value S2 for facet :NOT-SAME-VALUES of slot S1 of frame F, where S2 is a slot, means that the set of values 1211
of slot S1 of F is not equal to the set of values of slot S2 of F. That is: 1212
 1213
 (=> (:NOT-SAME-VALUES ?S1 ?F ?S2) 1214
 (not (= (setofall ?V (holds ?S1 ?F ?V)) 1215
 (setofall ?V (holds ?S2 ?F ?V))))) 1216
 1217
A value (S1 … Sn) for facet :NOT-SAME-VALUES of slot S of frame F means that the set of values of slot S of F is 1218
not equal to the set of values of slot chain (S1 … Sn) of F. That is: 1219
 1220
 (=> (:NOT-SAME-VALUES ?S ?F (listof @Sn)) 1221
 (not (= (setofall ?V (holds ?S ?F ?V)) 1222
 (setofall ?V (slot-chain-value (listof @Sn) ?F ?V))))) 1223
 1224
:SUBSET-OF-VALUES facet 1225
The :SUBSET-OF-VALUES facet specifies that the values of a slot of a frame are a subset of the values of other slots 1226
of that frame or of the values of slot chains starting at that frame. Each value of this facet is either a slot or a slot chain. 1227
A value S2 for facet :SUBSET-OF-VALUES of slot S1 of frame F, where S2 is a slot, means that the set of values of slot 1228
S1 of F is a subset of the set of values of slot S2 of F. That is, 1229
 1230
 (=> (:SUBSET-OF-VALUES ?S1 ?F ?S2) 1231
 (subset (setofall ?V (holds ?S1 ?F ?V)) 1232
 (setofall ?V (holds ?S2 ?F ?V)))) 1233
 1234
A value (S1 … Sn) for facet :SUBSET-OF-VALUES of slot S of frame F means that the set of values of slot S of F is a 1235
subset of the set of values of the slot chain (S1 … Sn) of F. That is, 1236
 1237
 (=> (:SUBSET-OF-VALUES ?S ?F (listof @Sn)) 1238
 (subset (setofall ?V (holds ?S ?F ?V)) 1239
 (setofall ?V (slot-chain-value (listof @Sn) ?F ?V)))) 1240
 1241
:NUMERIC-MINIMUM facet 1242
The :NUMERIC-MINIMUM facet specifies a lower bound on the values of a slot whose values are numbers. Each value 1243
of the :NUMERIC-MINIMUM facet is a number. This facet is defined as follows: 1244
 1245
 (=> (:NUMERIC-MINIMUM ?S ?F ?N) 1246
 (and (:NUMBER ?N) 1247
 (=> (holds ?S ?F ?V) (>= ?V ?N)))) 1248
 1249
 (=> (template-facet-value :NUMERIC-MINIMUM ?S ?F ?N) 1250
 (and (:NUMBER ?N) 1251
 (=> (template-slot-value ?S ?F ?V) (>= ?V ?N)))) 1252
 1253
:NUMERIC-MAXIMUM facet 1254
The :NUMERIC-MAXIMUM facet specifies an upper bound on the values of a slot whose values are numbers. Each 1255
value of this facet is a number. This facet is defined as follows: 1256
 1257

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

26

 (=> (:NUMERIC-MAXIMUM ?S ?F ?N) 1258
 (and (:NUMBER ?N) 1259
 (=> (holds ?S ?F ?V) (=< ?V ?N)))) 1260
 1261
 (=> (template-facet-value :NUMERIC-MAXIMUM ?S ?F ?N) 1262
 (and (:NUMBER ?N) 1263
 (=> (template-slot-value ?S ?F ?V) (=< ?V ?N)))) 1264
 1265
:SOME-VALUES facet 1266
The :SOME-VALUES facet specifies a subset of the values of a slot of a frame. This facet of a slot of a frame can have 1267
any value that can also be a value of the slot of the frame. A value V for own facet :SOME-VALUES of own slot S of 1268
frame F means that V is also a value of own slot S of F. That is, 1269
 1270
 (=> (:SOME-VALUES ?S ?F ?V) (holds ?S ?F ?V)) 1271
 1272
:COLLECTION-TYPE facet 1273
The :COLLECTION-TYPE facet specifies whether multiple values of a slot are to be treated as a set, list, or bag. No 1274
axiomatization is provided for treating multiple values as lists or bags because of the lack of a suitable formal 1275
interpretation for the ordering of values in lists of values that result from multiple inheritance and the multiple occurrence 1276
of values in bags that result from multiple inheritance. 1277
 1278
The protocol itself makes no commitment as to how values expressed in collection types other than set are combined 1279
during inheritance. Thus, OKBC guarantees that multiple slot and facet values stored at a frame as a bag or a list are 1280
retrievable as an equivalent bag or list at that frame. However, when the values are inherited to a subclass or instance, 1281
no guarantees are provided regarding the ordering of values for lists or the repeating of multiple occurrences of values 1282
for bags. 1283
 1284
:DOCUMENTATION-IN-FRAME facet 1285
:DOCUMENTATION-IN-FRAME is a facet whose values at a slot for a frame are text strings providing documentation for 1286
that slot on that frame. The only requirement on the :DOCUMENTATION facet is that its values be strings. 1287
 1288
Slots 1289

:DOCUMENTATION slot 1290
:DOCUMENTATION is a slot whose values at a frame are text strings providing documentation for that frame. Note that 1291
the documentation describing a class would be values of the own slot :DOCUMENTATION on the class. The only 1292
requirement on the :DOCUMENTATION slot is that its values be strings. That is, 1293
 1294
 (=> (:DOCUMENTATION ?F ?S) (:STRING ?S)) 1295
 1296
Slots on Slot Frames 1297

The slots described in this section can be associated with frames that represent slots. In general, these slots describe 1298
properties of a slot which hold at any frame that can have a value for the slot. 1299
 1300
:DOMAIN slot 1301
:DOMAIN specifies the domain of the binary relation represented by a slot frame. Each value of the slot :DOMAIN 1302
denotes a class. A slot frame S having a value C for own slot :DOMAIN means that every frame that has a value for 1303
own slot S must be an instance of C, and every frame that has a value for template slot S must be C or a subclass of C. 1304
That is: 1305
 1306
 (=> (:DOMAIN ?S ?C) 1307
 (and (:SLOT ?S) 1308
 (class ?C) 1309
 (=> (holds ?S ?F ?V) (instance-of ?F ?C)) 1310
 (=> (template-slot-value ?S ?F ?V) 1311
 (or (= ?F ?C) (subclass-of ?F ?C)))) 1312
 1313

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

27

If a slot frame S has a value C for own slot :DOMAIN and I is an instance of C, then I is said to be in the domain of S. 1314
A value for slot :DOMAIN can be a KIF expression of the following form: 1315
 1316
 <domain-expr> ::= (union <OKBC-class>*) | OKBC-class 1317
 1318
A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class. 1319
 1320
Note that if slot :DOMAIN of a slot frame S has multiple values C1,…,Cn, then the domain of slot S is constrained to be 1321
the intersection of classes C1,…,Cn. Every slot is considered to have :THING as a value of its :DOMAIN slot. That is, 1322
 1323
 (=> (:SLOT ?S) (:DOMAIN ?S :THING)) 1324
 1325
:SLOT-VALUE-TYPE slot 1326
:SLOT-VALUE-TYPE specifies the classes of which values of a slot must be an instance (i.e., the range of the binary 1327
relation represented by a slot). Each value of the slot :SLOT-VALUE-TYPE denotes a class. A slot frame S having a 1328
value V for own slot :SLOT-VALUE-TYPE means that the own facet :VALUE-TYPE has value V for slot S of any frame 1329
that is in the domain of S. That is, 1330
 1331
 (=> (:SLOT-VALUE-TYPE ?S ?V) 1332
 (and (:SLOT ?S) 1333
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1334
 (:VALUE-TYPE ?S ?F ?V)))) 1335
 1336
As is the case for the :VALUE-TYPE facet, the value for the :SLOT-VALUE-TYPE slot can be a KIF expression of the 1337
following form: 1338
 1339
 <value-type-expr> ::= (union <OKBC-class>*) | (set-of <OKBC-value>*) | 1340
 OKBC-class 1341
 1342
A OKBC-class is any entity X for which (class X) is true or that is a standard OKBC class described. A OKBC-1343
value is any entity. The union expression allows the specification of a disjunction of classes (e.g., either a dog or a 1344
cat), and the set-of expression allows the specification of an explicitly enumerated set of values (e.g., either Clyde, 1345
Fred, or Robert). 1346
 1347
:SLOT-INVERSE slot 1348
:SLOT-INVERSE specifies inverse relations for a slot. Each value of :SLOT-INVERSE is a slot. A slot frame S having a 1349
value V for own slot :SLOT-INVERSE means that own facet :INVERSE has value V for slot S of any frame that is in the 1350
domain of S. That is, 1351
 1352
 (=> (:SLOT-INVERSE ?S ?V) 1353
 (and (:SLOT ?S) 1354
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1355
 (:INVERSE ?S ?F ?V)))) 1356
 1357
:SLOT-CARDINALITY slot 1358
:SLOT-CARDINALITY specifies the exact number of values that may be asserted for a slot for entities in the slot's 1359
domain. The value of slot :SLOT-CARDINALITY is a nonnegative integer. A slot frame S having a value V for own slot 1360
:SLOT-CARDINALITY means that own facet :CARDINALITY has value V for slot S of any frame that is in the domain 1361
of S. That is, 1362
 1363
 (=> (:SLOT-CARDINALITY ?S ?V) 1364
 (and (:SLOT ?S) 1365
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1366
 (:CARDINALITY ?S ?F ?V)))) 1367
 1368
:SLOT-MAXIMUM-CARDINALITY slot 1369
:SLOT-MAXIMUM-CARDINALITY specifies the maximum number of values that may be asserted for a slot for entities 1370
in the slot's domain. The value of slot :SLOT-MAXIMUM-CARDINALITY is a nonnegative integer. A slot frame S having 1371

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

28

a value V for own slot :SLOT-MAXIMUM-CARDINALITY means that own facet :MAXIMUM-CARDINALITY has value V 1372
for slot S of any frame that is in the domain of S. That is, 1373
 1374
 (=> (:SLOT-MAXIMUM-CARDINALITY ?S ?V) 1375
 (and (:SLOT ?S) 1376
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1377
 (:MAXIMUM-CARDINALITY ?S ?Csub ?V)))) 1378
 1379
:SLOT-MINIMUM-CARDINALITY slot 1380
:SLOT-MINIMUM-CARDINALITY specifies the minimum number of values for a slot for entities in the slot's domain. 1381
The value of slot :SLOT-MINIMUM-CARDINALITY is a nonnegative integer. A slot frame S having a value V for own 1382
slot :SLOT-MINIMUM-CARDINALITY means that own facet :MINIMUM-CARDINALITY has value V for slot S of any 1383
frame that is in the domain of S. That is, 1384
 1385
 (=> (:SLOT-MINIMUM-CARDINALITY ?S ?V) 1386
 (and (:SLOT ?S) 1387
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1388
 (:MINIMUM-CARDINALITY ?S ?F ?V)))) 1389
 1390
:SLOT-SAME-VALUES slot 1391
:SLOT-SAME-VALUES specifies that a slot has the same values as either other slots or as slot chains for entities in the 1392
slot's domain. Each value of slot :SLOT-SAME-VALUES is either a slot or a slot chain. A slot frame S having a value V 1393
for own slot :SLOT-SAME-VALUES means that own facet :SAME-VALUES has value V for slot S of any frame that is in 1394
the domain of S. That is, 1395
 1396
 (=> (:SLOT-SAME-VALUES ?S ?V) 1397
 (and (:SLOT ?S) 1398
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1399
 (:SAME-VALUES ?S ?F ?V))) 1400
 1401
:SLOT-NOT-SAME-VALUES slot 1402
:SLOT-NOT-SAME-VALUES specifies that a slot does not have the same values as either other slots or as slot chains 1403
for entities in the slot's domain. Each value of slot :SLOT-NOT-SAME-VALUES is either a slot or a slot chain. A slot 1404
frame S having a value V for own slot :SLOT-NOT-SAME-VALUES means that own facet :NOT-SAME-VALUES has 1405
value V for slot S of any frame that is in the domain of S. That is, 1406
 1407
 (=> (:SLOT-NOT-SAME-VALUES ?S ?V) 1408
 (and (:SLOT ?S) 1409
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1410
 (:NOT-SAME-VALUES ?S ?F ?V))) 1411
 1412
:SLOT-SUBSET-OF-VALUES slot 1413
:SLOT-SUBSET-OF-VALUES specifies that the values of a slot are a subset of either other slots or of slot chains for 1414
entities in the slot's domain. Each value of slot :SLOT-SUBSET-OF-VALUES is either a slot or a slot chain. A slot frame 1415
S having a value V for own slot :SLOT-SUBSET-OF-VALUES means that own facet :SUBSET-OF-VALUES has value 1416
V for slot S of any frame that is in the domain of S. That is, 1417
 1418
 (=> (:SLOT-SUBSET-OF-VALUES ?S ?V) 1419
 (and (:SLOT ?S) 1420
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1421
 (:SUBSET-OF-VALUES ?S ?F ?V))) 1422
 1423
:SLOT-NUMERIC-MINIMUM slot 1424
:SLOT-NUMERIC-MINIMUM specifies a lower bound on the values of a slot for entities in the slot's domain. Each value 1425
of slot :SLOT-NUMERIC-MINIMUM is a number. A slot frame S having a value V for own slot :SLOT-NUMERIC-1426
MINIMUM means that own facet :NUMERIC-MINIMUM has value V for slot S of any frame that is in the domain of S. 1427
That is, 1428
 1429
 (=> (:SLOT-NUMERIC-MINIMUM ?S ?V) 1430

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

29

 (and (:SLOT ?S) 1431
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1432
 (:NUMERIC-MINIMUM ?S ?F ?V))) 1433
 1434
:SLOT-NUMERIC-MAXIMUM slot 1435
:SLOT-NUMERIC-MAXIMUM specifies an upper bound on the values of a slot for entities in the slot's domain. Each 1436
value of slot :SLOT-NUMERIC-MAXIMUM is a number. A slot frame S having a value V for own slot :SLOT-NUMERIC-1437
MAXIMUM means that own facet :NUMERIC-MAXIMUM has value V for slot S of any frame that is in the domain of S. 1438
That is, 1439
 1440
 (=> (:SLOT-NUMERIC-MAXIMUM ?S ?V) 1441
 (and (:SLOT ?S) 1442
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1443
 (:NUMERIC-MAXIMUM ?S ?F ?V))) 1444
 1445
:SLOT-SOME-VALUES slot 1446
:SLOT-SOME-VALUES specifies a subset of the values of a slot for entities in the slot's domain. Each value of slot 1447
:SLOT-SOME-VALUES of a slot frame must be in the domain of the slot represented by the slot frame. A slot frame S 1448
having a value V for own slot :SLOT-SOME-VALUES means that own facet :SOME-VALUES has value V for slot S of 1449
any frame that is in the domain of S. That is, 1450
 1451
 (=> (:SLOT-SOME-VALUES ?S ?V) 1452
 (and (:SLOT ?S) 1453
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1454
 (:SOME-VALUES ?S ?F ?V))) 1455
 1456
:SLOT-COLLECTION-TYPE slot 1457
:SLOT-COLLECTION-TYPE specifies whether multiple values of a slot are to be treated as a set, list, or bag. Slot 1458
:SLOT-COLLECTION-TYPE has one value, which is either set, list or bag. A slot frame S having a value V for own 1459
slot :SLOT-COLLECTION-TYPE means that own facet :COLLECTION-TYPE has value V for slot S of any frame that is 1460
in the domain of S. That is, 1461
 1462
 (=> (:SLOT-COLLECTION-TYPE ?S ?V) 1463
 (and (:SLOT ?S) 1464
 (=> (forall ?D (=> (:DOMAIN ?S ?D) (instance-of ?F ?D))) 1465
 (:COLLECTION-TYPE ?S ?F ?V))) 1466
 1467

Bibliography 1468

[1] Alexender Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperine Resnick. 1469
CLASSIC: A Structural Data Model for Objects. In Proceedings of the 1989 ACM SIGMOD International 1470
Conference on Management of Data, pages 58-67, Portland, OR, 1989. 1471

[2] Michael R. Genesereth and Richard E. Fikes. Knowledge Interchange Format, Version 3.0 Reference Manual. 1472
Technical Report Logic-92-1, Computer Science Department, Stanford University, 1992. 1473

[3] Thomas R. Gruber. A translation approach to portable ontology specifications. 1474
In R. Mizoguchi, editor, Proceedings of the Second Japanese Knowledge Acquisition for Knowledge-Based 1475
Systems Workshop, Kobe, 1992. To appear in Knowledge Acquisition, June 1993. 1476

[4] P.D. Karp. The Design Space of Frame Knowledge Representation Systems. 1477
Technical Report 520, SRI International Artificial Intelligence Center, 1992. 1478

[5] R. MacGregor. The Evolving Technology of Classification-based Knowledge Representation Systems. 1479
In J. Sowa, editor, Principles of semantic networks, pages 385-400. Morgan Kaufmann Publishers, 1991. 1480

[6] Peter F. Patel-Schneider and Bill Swartout. Description-Logic Knowledge Representation System Specification, 1481
from the KRSS Group of the DARPA Knowledge Sharing Effort. 1482
Technical report, November 1993. 1483

[7] Christof Peltason, Albrecht Schmiedel, Carsten Kindermann, and Joachim Quantz. The BACK System Revisited. 1484
Technical Report KIT - Report 75, Tecnische Universitat Berlin, September 1989. 1485

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

30

 1486

About this document ... 1487

Open Knowledge Base Connectivity 2.0.413 1488
-- Proposed -- 1489
This document was generated using the LaTeX2HTML translator Version 98.1p1 release (March 2nd, 1998) 1490
Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer Based Learning Unit, University of Leeds. 1491
The command line arguments were: 1492
latex2html -address -split 2 km.tex. 1493
The translation was initiated by Vinay K. Chaudhri on 1998-11-24 1494

13 The Open Knowledge Base Connectivity protocol is a result of the joint work between the Artificial Intelligence Center of SRI International and the
Knowledge Systems Laboratory of Stanford University. At Stanford University, this work was supported by the Department of Navy contracts titled
Technology for Developing Network-based Information Brokers (Contract Number N66001-96-C-8622-P00004) and Large-Scale Repositories of
Highly Expressive Reusable Knowledge (Contract Number N66001-97-C-8554). At SRI International, it was supported by a Rome Laboratory
contract titled Reusable Tools for Knowledge Base and Ontology Development (Contract Number F30602-96-C-0332), a DARPA contract entitled
Ontology Construction Toolkit, and NIH Grant R29-LM-05413-01A1.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

31

5.1.1 Symbols 1495

The following is the normative list of predicates and constants that compose the FIPA-Meta-Ontology and that must 1496
be used by a FIPA agent when talking about and manipulating ontologies. It is here reported as a quick reference for 1497
the programmer of this specification. 1498
 1499

5.1.1.1 Predicates 1500
Standard Predicates Informal Description

(<classname> ?class) Is true if and only if ?class is an instance of the class
<classname>

(<facetname> ?class ?slot ?value) Is true if and only if value is the value of the facet
<facetname> of the slot slot of the class class

(<slotname> ?class ?value) Is true if and only if value is the value of the slot
<slotname> of the class class

(CLASS ?X) Is true if and only if its argument X is a class
(FACET ?X) Is true if and only if its argument X is a facet
(FACET-OF ?facet ?slot ?frame) Is true if and only if the argument facet is a facet of the slot

slot of the frame frame
(FRAME-SENTENCE ?frame ?predicate) Is true if and only if the predicate ?predicate is asserted

within the frame ?frame
(INDIVIDUAL ?X) Is true if and only if its argument X is an individual
(INSTANCE-OF ?I ?C) Predicate expressing the instance relation between an

instance I and a class C it belongs to.
(PRIMITIVE ?x) Is true if and only if its argument X is a primitive class.
(SLOT ?X) Is true if and only if its argument X is a slot
(SLOT-OF ?slot ?frame) Is true if and only if the argument slot is a slot of the frame

frame
(SUBCLASS-OF ?Csub ?Csuper) Is true if and only if all instances of the class Csub are also

instances of Csuper
(SUPERCLASS-OF ?Csuper ?Csub) Is true if and only if all instances of the class Csub are also

instances of Csuper. It is the inverse of the relation
SUBCLASS-OF

(TEMPLATE-FACET-OF ?facet ?slot
 ?frame)

Is true if and only if the argument facet is a template facet
of the slot slot of the frame frame

(TEMPLATE-FACET-VALUE ?facet ?slot
 ?frame ?value)

Is true if and only if the argument value is the value of the
facet facet of the slot slot of the frame frame

(TEMPLATE-SLOT-OF ?slot ?frame) Is true if and only if the argument slot is a template slot of
the frame frame

(TEMPLATE-SLOT-VALUE ?slot ?frame
 ?value)

Is true if and only if the argument value is the value of the
slot slot of the frame frame

(TYPE-OF ?C ?I) Predicate expressing the instance relation between an
instance I and a class C it belongs to. It is the inverse of the
relation INSTANCE-OF

 1501

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

32

5.1.1.2 List of Standard Classes 1502
:THING
:CLASS
:INDIVIDUAL
:NUMBER
:INTEGER
:STRING
:SYMBOL
:LIST

 1503

5.1.1.3 Standard Facets 1504
:VALUE-TYPE
:INVERSE
:CARDINALITY
:MAXIMUM-CARDINALITY
:MINIMUM-CARDINALITY
:SAME-VALUES
:NOT-SAME-VALUES
:SUBSET-OF-VALUES
:NUMERIC-MAXIMUM
:NUMERIC-MINIMUM
:SOME-VALUES
:COLLECTION-TYPE
:DOCUMENTATION-IN-FRAME

 1505

5.1.1.4 Standard Slots 1506
:DOCUMENTATION

 1507

5.1.1.5 Standard Slots on Slot Frames 1508
:DOMAIN
:SLOT-VALUE-TYPE
:SLOT-INVERSE
:SLOT-CARDINALITY
:SLOT-MAXIMUM-CARDINALITY
:SLOT-MINIMUM-CARDINALITY
:SLOT-SAME-VALUES
:SLOT-NOT-SAME-VALUES
:SLOT-SUBSET-OF-VALUES
:SLOT-NUMERIC-MINIMUM
:SLOT-NUMERIC-MAXIMUM
:SLOT-SOME-VALUES
:SLOT-COLLECTION-TYPE

 1509

5.2 Responsibilities, Actions and Predicates Supported by the Ontology Agent 1510

This section describes responsibilities, actions and predicates supported by the ontology agent. They compose the 1511
FIPA-Ontol-Service-Ontology. 1512
 1513
An action can be requested or canceled, for example: 1514
 1515
(request 1516
 :sender 1517
 (agent-identifier 1518
 :name client-agent@foo.com 1519

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

33

 :addresses (sequence iiop://foo.com/acc)) 1520
 :receiver (set 1521
 (agent-identifier 1522
 :name ontology-agent@foo.com 1523
 :addresses (sequence iiop://foo.com/acc))) 1524
 :language FIPA-SL2 1525
 :ontology (set FIPA-Ontol-Service-Ontology animal-ontology) 1526
 :content 1527
 (action 1528
 (agent-identifier 1529
 :name ontology-agent@foo.com 1530
 :addresses (sequence iiop://foo.com/acc)) 1531
 (assert (subclass-of whale mammal)))) 1532
 1533
In the above example, agent client-agent requests ontology-agent the action of assertion that whale is an 1534
instance of mammal in an ontology called animal-ontology with language FIPA-SL2 (see [FIPA0008]) and 1535
ontology FIPA-Ontol-Service-Ontology. 1536
 1537
Predicates can be informeded, configmeded, disconfirmeded, query-if or query-refed. For example: 1538
 1539
(inform 1540
 :sender 1541
 (agent-identifier 1542
 :name ontology-agent@foo.com 1543
 :addresses (sequence iiop://foo.com/acc)) 1544
 :receiver (set 1545
 (agent-identifier 1546
 :name client-agent@foo.com 1547
 :addresses (sequence iiop://foo.com/acc))) 1548
 :language FIPA-SL2 1549
 :ontology (set FIPA-Ontol-Service-Ontology animal-ontology) 1550
 :content 1551
 (subclass-of whale mammal)) 1552
 1553
In the above example ontology-agent informs client-agent that (it believes it is true that) whale is a subclass of 1554
mammal. 1555
 1556

5.2.1 Responsibilities of the Ontology Agent 1557

The OA maintains ontology by defining, modifying or removing terms and definitions contained in the ontology. It 1558
responds to queries about the terms in an ontology or relationship between ontologies. The OA can provide the 1559
translation service of expressions between different ontologies or different content languages by itself, possibly as a 1560
wrapper to an ontology server. The actions and predicates described in this section are used in conjunction with FIPA 1561
ACL to perform these functions. 1562
 1563

5.2.2 Assertion 1564

The action ASSERT must be used to request to assert a predicate in an ontology. The syntax of ASSERT action is as 1565
follows: 1566
 1567
(ASSERT (predicate)) 1568
 1569
The ontology in which the predicate must be asserted is identified by its ontology-name in the ontology parameter of the 1570
ACL message. The effect of asserting a predicate is to add, create or define the said predicate in the ontology 1571
definition. The OA is responsible to respect the consistency of the ontology and it can refuse (using the refuse 1572
communicative act) to do the action if the result would produce an inconsistent ontology. 1573
 1574
All predicates in the FIPA-Meta-Ontology can be passed as a parameter of this action. 1575
 1576

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

34

5.2.3 Retraction 1577

The action RETRACT must be used to request the OA to retract a predicate in an ontology. The syntax of RETRACT 1578
action is as follows: 1579
 1580
(RETRACT (predicate)) 1581
 1582
The ontology in which the predicate must be asserted is identified by its ontology-name in the ontology attribute of the 1583
ACL message. The effect of retracting a predicate is to remove, delete or detach the said predicate in the ontology 1584
definition. The OA is responsible to respect consistency of the ontology and it can refuse (using the refuse 1585
communicative act) to do the action if the result would produce an inconsistent ontology. 1586
 1587
All predicates in the FIPA-Meta-Ontology can be passed as a parameter of this action. 1588
 1589

5.2.4 Query 1590

This section describes the actions and predicates for querying and identifying the ontologies. Typical queries include 1591
questions about relationship between terms or between ontologies, and identifying a shared sub-ontology for 1592
communication. 1593
 1594
The query-if communicative act (see [FIPA00053]) is used to query a proposition, which is either true or false. The 1595
query-ref communicative act (see [FIPA00054]) is used to ask for identifying referencing expression, which denotes 1596
an object14. 1597
 1598
All predicates in the FIPA-Meta-Ontology can be used in the content of these communicative acts. 1599
 1600
The :ontology parameter of an ACL message should include both FIPA-Ontol-Service-Ontology and the 1601
identifier of the ontology being queried. For example, the following is a query from client-agent to ontology-1602
agent asking for the reference of instances of a class citrus: 1603
 1604
(query-ref 1605
 :sender 1606
 (agent-identifier 1607
 :name client-agent@foo.com 1608
 :addresses (sequence iiop://foo.com/acc)) 1609
 :receiver (set 1610
 (agent-identifier 1611
 :name ontology-agent@foo.com 1612
 :addresses (sequence iiop://foo.com/acc))) 1613
 :language FIPA-SL 1614
 :ontology (set FIPA-Ontol-Service-Ontology fruits-ontology) 1615
 :content 1616
 (iota ?x (instance-of ?x citrus)) 1617
 :reply-with citrus-query) 1618
 1619
The ontology-agent can then reply with the following inform message answering that the queried instances of the 1620
class citrus are orange, lemon and grapefruit: 1621
 1622
(inform 1623
 :sender 1624
 (agent-identifier 1625
 :name ontology-agent@foo.com 1626
 :addresses (sequence iiop://foo.com/acc)) 1627
 :receiver (set 1628
 (agent-identifier 1629
 :name client-agent@foo.com 1630

14 The reader might ask why the query is not an action, as the previous ones, but a communicative act. It must then be noticed that the previous
actions correspond to an administrative request to actually modify an ontology. In this case, the intention of the sender agent is instead to query the
knowledge base of the OA.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

35

 :addresses (sequence iiop://foo.com/acc))) 1631
 :language FIPA-SL 1632
 :ontology (set FIPA-Ontol-Service-Ontology fruits-ontology) 1633
 :content 1634
 (= (iota ?x (instance-of ?x citrus)) (orange lemon grapefruit)) 1635
 :in-reply-to citrus-query) 1636
 1637

5.2.5 Modify 1638

This section describes the action for modifying ontologies. Basically, this kind of action is a combination of querying, 1639
removing and adding predicates about the symbols in the ontology. However, different from doing these actions one by 1640
one, the execution of the sequence of actions must be atomic, that is other actions cannot intervene in the modify action 1641
during the execution of it in order to assure the consistency of the transaction. If at least one of the atomic actions in the 1642
modify action fails, the ontology agent must recover the situation just before the modify action commences. Actions 1643
must be executed in sequence. The sequence of actions is independent from other actions that are running at the same 1644
time on the same ontology agent. Other agents cannot see the interim status of the modify action. 1645
 1646
To enable such an action, the following action operator: 1647
 1648
(ATOMIC-SEQUENCE action*) 1649
 1650
is introduced. The semantics of ATOMIC-SEQUENCE is a sequence of actions with guaranteed atomicity, consistency, 1651
independence and durability (ACID property). Some locking mechanism is assumed but the kind of lock is 1652
implementation dependent. For example: 1653
 1654
(action OA 1655
 (atomic-sequence 1656
 (action OA (assert animal (class mammal))) 1657
 (action OA (retract animal (subclass-of whale fish))) 1658
 (action OA (retract animal (class fish))) 1659
 (action OA (assert animal (subclass-of whale mammal))))) 1660
 1661

5.2.6 Translation of the Terms and Sentences between Ontologies 1662

TRANSLATE is an action of translating the terms and sentences between translatable ontologies. Before issuing the 1663
translate action, the agent must check whether the ontologies are translatable or not, using the predicate described in 1664
the next section. The following is the syntax of TRANSLATE action: 1665
 1666
(TRANSLATE expression translation-description) 1667
 1668
This action has always a result and should be used in a FIPA-request interaction protocol in order to receive the result 1669
of the translation of an expression. For example, if agent client-agent wants to translate a US-English sentence to 1670
Italian, it will use the following ACL: 1671
 1672
(request 1673
 :sender 1674
 (agent-identifier 1675
 :name client-agent@foo.com 1676
 :addresses (sequence iiop://foo.com/acc)) 1677
 :receiver (set 1678
 (agent-identifier 1679
 :name ontology-agent@foo.com 1680
 :addresses (sequence iiop://foo.com/acc))) 1681
 :protocol FIPA-Request 1682
 :language FIPA-SL2 1683
 :ontology FIPA-Ontol-Service-Ontology 1684
 :content 1685
 (action 1686
 (agent-identifier 1687

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

36

 :name ontology-agent@foo.co 1688
 :addresses (sequence iiop://foo.com/acc)) 1689
 (translate (temperature today (F 50)) 1690
 (translation-description 1691
 :from us-english-ontology 1692
 :to italian-ontology))) 1693
 :reply-with translation-query-1123234) 1694
 1695
The OA replies with an inform message: 1696
 1697
(inform 1698
 :sender 1699
 (agent-identifier 1700
 :name ontology-agent@foo.com 1701
 :addresses (sequence iiop://foo.com/acc)) 1702
 :receiver (set 1703
 (agent-identifier 1704
 :name client-agent@foo.com 1705
 :addresses (sequence iiop://foo.com/acc))) 1706
 :language FIPA-SL2 1707
 :ontology (set FIPA-Ontol-Service-Ontology) 1708
 :content 1709
 (= (iota ?i 1710
 (result 1711
 (action 1712
 (agent-identifier 1713
 :name ontology-agent@foo.com 1714
 :addresses (sequence iiop://foo.com/acc)) 1715

 (translate (temperature today (F 50))) 1716
 (translation-description 1717
 :from us-english-ontology 1718
 :to italian-ontology))) ?i)) 1719
 (temperatura oggi (C 10))) 1720
 :in-reply-to translation-query-1123234) 1721
 1722
The following predicate can be used to determine the relationship between source-ontology and destination-ontology: 1723
 1724
(ontol-relationship ?source-ontology ?destination-ontology ?level) 1725
 1726
For example, an agent wishing to know if there exists a translation between two ontologies may use the following: 1727
 1728
(query-ref 1729
 :sender 1730
 (agent-identifier 1731
 :name Agent1@foo.com 1732
 :addresses (sequence iiop://foo.com/acc)) 1733
 :receiver (set 1734
 (agent-identifier 1735
 :name OA@foo.com 1736
 :addresses (sequence iiop://foo.com/acc))) 1737
 :language FIPA-SL 1738
 :ontology FIPA-Ontol-Service-Ontology 1739
 :content 1740
 (iota ?level (ontol-relationship O1 O2 ?level))) 1741
 1742
An OA that is not able to provide any translation between the two ontologies may answer: 1743
 1744
(inform 1745
 :sender 1746
 (agent-identifier 1747
 :name OA@foo.com 1748
 :addresses (sequence iiop://foo.com/acc)) 1749
 :receiver (set 1750

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

37

 (agent-identifier 1751
 :name Agent1@foo.com 1752
 :addresses (sequence iiop://foo.com/acc))) 1753
 :language FIPA-SL 1754
 :ontology FIPA-Ontol-Service-Ontology 1755
 :content 1756
 nil) 1757
 1758

5.2.7 Exceptions 1759

Errors and exceptions are handled in the same manner as described in [FIPA00023]: 1760
 1761
• not-understood reasons. 1762
 1763
• failure reasons. 1764
 1765
• refuse reasons. The following refuse reasons can be used by the OA to refuse to modify a frame when it is read-1766

only or when it creates an inconsistency in the ontology: 1767
 1768
(READ-ONLY <frame-name>) 1769
(INCONSISTENT <frame-name>) 1770

 1771
For example, the agent client-agent requests ontology-agent to assert a predicate but it is refused: 1772
 1773
(request 1774
 :sender 1775
 (agent-identifier 1776
 :name client-agent@foo.com 1777
 :addresses (sequence iiop://foo.com/acc)) 1778
 :receiver (set 1779
 (agent-identifier 1780
 :name ontology-agent@foo.com 1781
 :addresses (sequence iiop://foo.com/acc))) 1782
 :content 1783
 (action 1784
 (agent-identifier 1785
 :name ontology-agent@foo.com 1786
 :addresses (sequence iiop://foo.com/acc)) 1787
 (assert animal-ontology (instance-of whale fish)))) 1788
 (refuse 1789
 :sender 1790
 (agent-identifier 1791
 :name ontology-agent@foo.com 1792
 :addresses (sequence iiop://foo.com/acc)) 1793
 :receiver (set 1794
 (agent-identifier 1795
 :name client-agent@foo.com 1796
 :addresses (sequence iiop://foo.com/acc))) 1797
 :content 1798
 ((action 1799
 (agent-identifier 1800
 :name ontology-agent@foo.com 1801
 :addresses (sequence iiop://foo.com/acc)) 1802

 (assert animal-ontology (instance-of whale fish))) 1803
 unauthorised)) 1804

 1805
Additionally, the agent client-agent queries ontology-agent the result of asserting a predicate. It is rejected by 1806
the OA because of an error: 1807
 1808
(query-ref 1809
 :sender 1810

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

38

 (agent-identifier 1811
 :name client-agent@foo.com 1812
 :addresses (sequence iiop://foo.com/acc)) 1813
 :receiver (set 1814
 (agent-identifier 1815
 :name ontology-agent@foo.com 1816
 :addresses (sequence iiop://foo.com/acc))) 1817
 :content 1818
 (iota ?r 1819
 (result 1820
 (action 1821
 (agent-identifier 1822
 :name ontology-agent@foo.com 1823
 :addresses (sequence iiop://foo.com/acc)) 1824
 (assert animal-ontology (instance-of whale fish))) ?r)))) 1825
 (inform 1826
 :sender 1827
 (agent-identifier 1828
 :name ontology-agent@foo.com 1829
 :addresses (sequence iiop://foo.com/acc)) 1830
 :receiver (set 1831
 (agent-identifier 1832
 :name client-agent@foo.com 1833
 :addresses (sequence iiop://foo.com/acc))) 1834
 :content 1835
 (= (iota ?r 1836
 (result 1837
 (action 1838
 (agent-identifier 1839
 :name ontology-agent@foo.com 1840
 :addresses (sequence iiop://foo.com/acc)) 1841
 (assert animal-ontology (instance-of whale fish))) ?r))) 1842
 unauthorised)) 1843
 1844

5.3 Interaction Protocol to Agree on a Shared Ontology 1845

Agents must agree on an ontology in order to communicate. Consider an Agent A that commits to ontology O1 and 1846
requests a service provided by Agent B. The simplest approach is for agent A to request the service from agent B, 1847
specifying ontology O1. If Agent B understands ontology O1, it will perform the service, otherwise it will answer not-1848
understood. In the latter case the communication cannot be achieved because the two partners do not share a 1849
common understanding of the symbols used in the domain of discourse. 1850
 1851
The most simple alternative to this situation, and probably also the most used, is that an agent, who is searching for a 1852
specific service, queries the DF for agents which provide that specific service and that, in addition, support a specific 1853
ontology. Provided that such an agent exists, the ontology sharing is guaranteed. 1854
 1855
A second approach allows Agent A to communicate with Agent B when the agents share two ontologies with different 1856
names but that are Identical or Equivalent (see section 3.3, Relationships Between Ontologies). The knowledge 1857
about the existing relationships between two ontologies can be accessed in general from the OA by querying with the 1858
ontol-relationship predicate. 1859
 1860
Provided that such an Identical or Equivalent relationship exists, the communication is again guaranteed 1861
because of the sharing of both the vocabulary and the logical axiomatization. As a sub-case of the previous one, if O1 is 1862
a sub-ontology of one of the ontologies known by Agent B, the Agent A can still communicate with Agent B, even if the 1863
vice-versa is not guaranteed. 1864
 1865
Finally, an other approach is when a translation relationship exists between O1 and one of the ontologies to which 1866
Agent B commits. In this case, Agent A can query the DF for an agent who provides such a translation service and it 1867
can still communicate with Agent B by using the translation as a proxy service. 1868
 1869

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

39

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

40

5.4 Meta Ontology Predicates and Actions 1870

This is the ontology that should be used by agents to request the services of an OA. It extends the FIPA-Meta-1871
Ontology described in section 5. 1872

5.4.1 Predicates 1873

Predicates Description
(ontol-relationship ?o1 ?o2
?level)

Is true if and only if there is a relationship of type level between
the ontology o1 and the ontology o2. See section 3.3 for a
detailed description of this predicate

5.4.2 Actions 1874

Actions Description
(assert predicate) Asserts the predicate in the ontology specified by :ontology

parameter.
(retract predicate) Retracts the predicate in the ontology specified by :ontology

parameter.
(atomic-sequence <action>*) Introduces a transaction-type sequence of actions which is

treated as if to be a single action. It is used to modify an existing
ontology by combining the actions of retraction and assertion, for
example. The mechanism to maintain the consistency inside the
sequence and to protect values from outside the sequence is
dependent on the implementation.

(translate <expression>
 <translation-description>)

Translates the expression as specified by the translation-
description. Should be used with FIPA-Request protocol.

 1875

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

41

6 References 1876

[ANSIkif] Knowledge Interchange Format, Draft Proposal. American Nation Standards Institute, 1998. 1877
http://meta.stanford.edu/kif/dpans.html 1878

[Bayardo96] Semantic Integration of Information in Open and Dynamic Environments, Bayardo, R., Boher, W., 1879
Brice, R., Cichocki, A., Fowler, G., Helal, A., Kashyap, V., Ksiezyk, T., Martin, G., Nodine, M., Rashid, 1880
M., Ruisnkiewicz, Shea, R., Unnikrishnan, C., Unruh, A. and Woelk, D. MCC Technical Report MCC-1881
INSL-088-96, October 1996. 1882
http://www.mcc.com/projects/infosleuth/ 1883

[FIPAacl] FIPA Agent Communication Language Specification. Foundation for Intelligent Physical Agents, 2000. 1884
[FIPA00008] FIPA SL Content Language Specification. Foundation for Intelligent Physical Agents, 2000. 1885

http://www.fipa.org/specs/fipa00008/ 1886
[FIPA00023] FIPA Agent Management Specification. Foundation for Intelligent Physical Agents, 2000. 1887

http://www.fipa.org/specs/fipa00023/ 1888
[FIPA00042] FIPA CFP Communicative Act Specification. Foundation for Intelligent Physical Agents, 2000. 1889

http://www.fipa.org/specs/fipa00042/ 1890
[FIPA00053] FIPA Query-If Communicative Act Specification. Foundation for Intelligent Physical Agents, 2000. 1891

http://www.fipa.org/specs/fipa00053/ 1892
[FIPA00054] FIPA Query-Ref Communicative Act Specification. Foundation for Intelligent Physical Agents, 2000. 1893

http://www.fipa.org/specs/fipa00054/ 1894
[OKBC] Open Knowledge Base Connectivity Specification, Version 2.0.4. Stanford University, 1998. 1895

http://ontolingua.stanford.edu/okbc/ 1896
[W3Crdf] Resource Description Framework Model and Syntax Specification. World Wide Web Consortium, 1999. 1897

http://www.w3.org/RDF/ 1898

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

42

7 Informative Annex A — Ontologies and Conceptualizations15 1899

Despite its crucial importance for guaranteeing the exchange of content information among agents, the very notion of 1900
ontology is not completely clear yet from a theoretical point of view (although the various definitions proposed in the 1901
literature are slowly converging), and a suitable “reference model” for ontologies needs to be established in order to 1902
exploit them in the FIPA architecture. 1903
 1904
The purpose of this section is to present an overview of such a reference model, aimed to clarify the following points: 1905
 1906
• The distinction between an ontology and its underlying conceptualization. 1907

• The importance of axiomatic ontologies with respect to mere vocabularies. 1908

• A characterization of the ontology sharing problem. 1909

• The distinctions among the basic kinds of ontology. 1910

7.1 Ontologies vs. Conceptualizations 1911

In the philosophical sense, we may refer to an ontology as a particular system of categories accounting for a certain 1912
vision of the world. As such, this system does not depend on a particular language: Aristotle’s ontology is always the 1913
same, independently of the language used to describe it. On the other hand, in its most prevalent use in AI, an ontology 1914
refers to an engineering artefact, constituted by a specific vocabulary used to describe a certain reality, plus a set of 1915
explicit assumptions regarding the intended meaning of the vocabulary words. This set of assumptions has usually the 1916
form of a first-order logical theory, where vocabulary words appear as unary or binary predicate names, respectively 1917
called concepts and relations. In the simplest case, an ontology describes a hierarchy of concepts related by 1918
subsumption relationships; in more sophisticated cases, suitable axioms are added in order to express other 1919
relationships between concepts and to constrain their intended interpretation. 1920
 1921
The two readings of “ontology” described above are indeed related to each other, but in order to solve the 1922
terminological impasse we need to choose one of them, inventing a new name for the other: we shall adopt the AI 1923
reading, using the word conceptualization to refer to the philosophical reading. So two ontologies can be different in the 1924
vocabulary used (using English or Italian words, for instance) while sharing the same conceptualization. 1925
 1926
With this terminological clarification, an ontology can be defined as a specification of a conceptualization16. The latter 1927
concerns the way an agent structures its perceptions about the world, while the former gives a meaning to the 1928
vocabulary used by the agent to communicate such perceptions. Two agents may share the same conceptualization 1929
while using different vocabularies. For instance, the (usual) conceptualization underlying the English term Apple is the 1930
same as for the Italian term mela, and refers to the intrinsic nature and structure of all possible apples. The two terms 1931
belong to two different ontologies while sharing the same conceptualization. A clear separation between ontology and 1932
conceptualization becomes essential to address the issues related to ontology sharing, fusion, and translation, which in 1933
general imply multiple languages and multiple world views. 1934
 1935
A conceptualization is not concerned with meaning assignments, but just with the formal structure of reality as 1936
perceived and organized by an agent, independently of: 1937
 1938
• the language used to describe it; 1939

• the actual occurrence of a specific situation. 1940

An ontology, on the other hand, is first of all a vocabulary. However, an ontology consisting only of a vocabulary would 1941
be of very limited use, since its intended meaning would be not explicit. Therefore, besides specifying a vocabulary, an 1942

15 This annex is mainly an adaptation of [Guarino 1998].
2While this expression is the same introduced in [Gruber 1995], the notion of “conceptualization” adopted here is not the one referred to in that paper
(taken from [Genesereth and Nilsson 1987]), as discussed below.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

43

ontology must specify the intended meaning of such vocabulary, i.e. its underlying conceptualization. In some cases, 1943
the terms used belong to a very specific technical vocabulary, and their meaning is well agreed upon within a 1944
community of human agents. Things are different however in the case of ambiguous terms belonging to everyday 1945
natural language, or when computerized agents need to communicate. 1946
 1947

7.2 A Formal Account of Ontologies and Conceptualizations 1948

The notions introduced above require a suitable formalization in order to make clear the relationship between an 1949
ontology, its intended models, and a conceptualization. The latter notion has been defined in a well-known AI textbook 1950
[Genesereth and Nilsson 87] as a structure <D, R>, where D is a domain and R is a set or relevant relations on D. This 1951
definition has been then used by Gruber, who defined an ontology as “a specification of a conceptualization” [Gruber 1952
95]. While maintaining the validity of Gruber’s expression, already introduced above, we shall adopt in this document a 1953
notion of “conceptualization” different from the one introduced by Genesereth and Nilsson, following the proposal made 1954
in [Guarino and Giaretta 95], further revised in [Guarino 98]. 1955
 1956

7.2.1 What is a Conceptualization 1957

The problem with Genesereth and Nilsson’s notion of conceptualization is that it refers to ordinary mathematical 1958
relations on D, i.e. extensional relations. These relations reflect a particular state of affairs: for instance, in the blocks 1959
world, they may reflect a particular arrangement of blocks on the table (see figure 7). We need instead to focus on the 1960
meaning of these relations, independently of a state of affairs: for instance, the meaning of the “above” relation lies in 1961
the way it refers to certain couples of blocks according to their spatial arrangement. We need therefore to speak of 1962
intensional relations: we call them conceptual relations, reserving the simple term “relation” to ordinary mathematical 1963
relations. 1964
 1965

a

b

c e

d a

b

c

e

d

(a) (b)

 1966

Figure 7: Blocks on a table. (a) A possible arrangement of blocks. (b) A different arrangement. Also a different 1967
conceptualization? (From [Guarino and Giaretta 1995]) 1968

While ordinary relations are defined on a certain domain, conceptual relations are defined on a domain space. We shall 1969
define a domain space as a structure <D, W>, where D is a domain and W is the set of all relevant states of affairs of 1970
such domain (which we shall also call possible worlds). For instance, D may be a set of blocks on a table and W can be 1971
the set of all possible spatial arrangements of these blocks. Given a domain space <D, W>, we define a conceptual 1972

relation ρ
n
 of arity n on <D, W> as a total function ρ

n
: W→2D

n
 from W into the set of all n-ary (ordinary) relations on D. 1973

For a generic conceptual relation ρ, the set Eρ = {ρ(w) | w∈W} will contain the admittable extensions of ρ. A 1974
conceptualization for D can be now defined as a tuple C = <D, W, ℜ>, where ℜ is a set of conceptual relations on <D, 1975
W>17. We can say therefore that a conceptualization is a set of conceptual relations defined on a domain space. 1976
Consider now the structure <D, R> introduced by Genesereth and Nilsson. Since it refers to a particular world (or state 1977
of affairs), we shall call it a world structure. It is easy to see that a conceptualization defines many of such world 1978
structures, one for each world: they shall be called the intended world structures according to such conceptualization. 1979
Let C = <D, W, ℜ> be a conceptualization. For each possible world w∈W, the corresponding world structure according 1980

17 In the following, symbols denoting structures and sets of sets appear in boldface.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

44

to C is the structure SwC = <D, RwC>, where RwC ={ρ(w) | ρ∈ℜ} is the set of extensions (relative to w) of the elements of ℜ. 1981
We shall denote with SC the set {SwC | w∈W} all the intended world structures of C. 1982
 1983
Let us consider now a logical language L, with vocabulary V. Rearranging the standard definition, we can define a 1984
model for L as a structure <S, I>, where S = <D, R> is a world structure and I: V→D∪R is an interpretation function 1985
assigning elements of D to constant symbols of V, and elements of R to predicate symbols of V. As well known, a 1986
model fixes therefore a particular extensional interpretation of the language. Analogously, we can fix an intensional 1987
interpretation by means of a structure <C, ℑ>, where C = <D, W, ℜ> is a conceptualization and ℑ: V→D∪ℜ is a function 1988
assigning elements of D to constant symbols of V, and elements of ℜ to predicate symbols of V. We shall call this 1989
intensional interpretation an ontological commitment for L. If K = <C, ℑ> is a an ontological commitment for L, we say 1990
that L commits to C by means of K, while C is the underlying conceptualization of K18. 1991
 1992
Given a language L with vocabulary V, and an ontological commitment K = <C, ℑ> for L, a model <S, I> will be 1993
compatible with K if: i) S∈SC; ii) for each constant c, I(c) = ℑ(c); iii) for each predicate symbol p, I maps such a predicate 1994
into an admittable extension of ℑ(p), i.e. there exist a conceptual relation ρ and a world w such that ℑ(p) = ρ ∧ ρ(w) = 1995
I(p). The set IK(L) of all models of L that are compatible with K will be called the set of intended models of L according to 1996
K. 1997
 1998
In general, there will be no way to reconstruct the ontological commitment of a language from a set of its intended 1999
models, since a model does not necessarily reflect a particular world: in fact, since the relevant relations considered 2000
may not be enough to completely characterize a state of affairs, a model may actually describe a situation common to 2001
many states of affairs. This means that it is impossible to reconstruct the correspondence between worlds and 2002
extensional relations established by the underlying conceptualization. A set of intended models is therefore only a weak 2003
characterization of a conceptualization: it just excludes some absurd interpretations, without really describing the 2004
“meaning” of the vocabulary. 2005
 2006

7.2.2 What is an Ontology 2007

We can now clarify the role of an ontology, considered as a set of logical axioms designed to account for the intended 2008
meaning of a vocabulary. Given a language L with ontological commitment K, an ontology for L is a set of axioms 2009
designed in a way such that the set of its models approximates as best as possible the set of intended models of L 2010
according to K (see figure 8). In general, it is neither easy nor convenient to find an optimal set of axioms, so that an 2011
ontology will admit other models besides the intended ones. Therefore, an ontology can “specify” a conceptualization 2012
only in a very indirect way, since i) it can only approximate a set of intended models; ii) such a set of intended models is 2013
only a weak characterization of a conceptualization. We shall say that an ontology O for a language L approximates a 2014
conceptualization C if there exists an ontological commitment K = <C, ℑ> such that the intended models of L according 2015
to K are included in the models of O. An ontology commits to C if i) it has been designed with the purpose of 2016
characterizing C, and ii) it approximates C. A language L commits to an ontology O if it commits to some 2017
conceptualization C such that O agrees on C. With these clarifications, we come up to the following definition, which 2018
refines Gruber’s definition by making clear the difference between an ontology and a conceptualization: 2019

From a logical point of view, an ontology is a logical theory accounting for the intended meaning of a formal 2020
vocabulary19, i.e. its ontological commitment to a particular conceptualization of the world. The intended models of 2021
a logical language using such a vocabulary are constrained by its ontological commitment. An ontology indirectly 2022
reflects this commitment (and the underlying conceptualization) by approximating such intended models. 2023

 2024
The relationships between vocabulary, conceptualization, ontological commitment and ontology are illustrated in figure 2025
8. 2026

18 The expression “ontological commitment” has been sometimes used to denote the result of the commitment itself, i.e., in our terminology, the
underlying conceptualization.
19 Not necessarily this formal vocabulary will be part of a logical language: for example, it may be a protocol of communication between agents.

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

45

Intended models IK(L)

Language L

Conceptualization C

Models M(L)

commitment K = <C, ℑ>

Ontology

 2027

Figure 8: The intended models of a logical language reflect its commitment to a conceptualization. An ontology 2028
indirectly reflects this commitment (and the underlying conceptualization) by approximating this set of intended models. 2029

[From Guarino 98] 2030

7.3 The Ontology Integration Problem 2031

Information integration is a major application area for ontologies. As well known, even if two agents adopt the same 2032
vocabulary, there is no guarantee that they can agree on a certain information unless they commit to the same 2033
conceptualization. Assuming that each agent has its own conceptualization, a necessary condition in order to make an 2034
agreement possible is that the intended models of both conceptualizations overlap (see figure 9). 2035
 2036

M(L)

IA(L)

IB(L)

 2037

Figure 9: Two agents A and B using the same language L can communicate only if the set of intended models IA(L) and 2038
IB(L) associated to their conceptualizations overlap. [From Guarino 98] 2039

 2040
Supposing now that these two sets of intended models are approximated by two different ontologies, it may be the case 2041
that the latter overlap (i.e., they have some models in common) while their intended models do not (see figure 10). This 2042

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

46

means that a bottom-up approach to systems integration based on the integration of multiple local ontologies may not 2043
work, especially if the local ontologies are only focused on the conceptual relations relevant to a specific context, and 2044
therefore they are only weak and ad hoc approximations of the intended models. Hence, it seems more convenient to 2045
agree on a single top-level ontology rather than relying on agreements based on the intersection of different ontologies. 2046
 2047

M(L)

IA(L)

IB(L)

 2048

Figure 10: The sets of models of two different axiomatizations, corresponding to different ontologies, may intersect 2049
while the sets of intended models do not. [From Guarino 98] 2050

7.4 Basic Kinds of Ontologies 2051

We can classify ontologies along several dimensions: 2052
 2053
• their degree of dependence on a particular task or domain, 2054

• the level of detail of their axiomatization, and, 2055

• the nature of their domain (either “object-level” or “meta-level”). 2056

7.4.1 From Top-Level to Application-Level 2057

The first dimensions suggest the distinctions illustrated in figure 11. 2058

top-level ontology

domain ontology task ontology

application ontology

 2059

Figure 11: Kinds of ontologies, according to their level of dependence on a particular task or point of view. Thick arrows 2060
represent specialization relationships. From [Guarino 98]. 2061

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

47

• Top-level ontologies describe very general concepts like space, time, matter, object, event, action, etc., which are 2062
independent of a particular problem or domain: it seems therefore reasonable, at least in theory, to have unified top-2063
level ontologies for large communities of users. The development of a general enough top-level ontology is a very 2064
serious task, which hasn’t been satisfactory accomplished yet (see the efforts of the ANSI X3T2 Ad Hoc Group on 2065
Ontology). However, the adoption of a single agreed-upon top level seems to be preferable to a “bottom-up” 2066
approach based on the integration of more specific ontologies. 2067

• Domain ontologies and task ontologies describe, respectively, the vocabulary related to a generic domain (like 2068
medicine, or automobiles) or a generic task or activity (like diagnosing or selling), by specializing the terms 2069
introduced in the top-level ontology. 2070

• Application ontologies describe concepts depending both on a particular domain and task, which are often 2071
specializations of both the related ontologies. These concepts often correspond to roles played by domain entities 2072
while performing a certain activity, like replaceable unit or spare component. 2073

It may be important to make clear the difference between an application ontology and a knowledge base. The answer is 2074
related to the purpose of an ontology, which is a particular knowledge base, describing facts assumed to be always true 2075
by a community of users, in virtue of the agreed-upon meaning of the vocabulary used. A generic knowledge base, 2076
instead, may also describe facts and assertions related to a particular state of affairs or a particular epistemic state. 2077
Within a generic knowledge base, we can distinguish therefore two components: the ontology (containing state-2078
independent information) and the “core” knowledge base (containing state-dependent information). 2079
 2080

7.4.2 Shareable Ontologies and Reference Ontologies 2081

Another important classification dimension for ontologies is their level of detail, i.e., in other terms, the degree of 2082
characterization of the intended models. A fine-grained ontology very rich of axioms, written in a very expressive 2083
language like full first order logic, gets closer to specifying the intended meaning of a vocabulary (and therefore it may 2084
be used to establish consensus about sharing that vocabulary, or a knowledge base which uses that vocabulary), but it 2085
usually hard to develop and hard to reason on. A coarse ontology, on the other hand, may consist of a minimal set of 2086
axioms written in a language of minimal expressivity, to support only a limited set of specific services, intended to be 2087
shared among users which already agree on the underlying conceptualization. We can distinguish therefore between 2088
detailed reference ontologies and coarse shareable ontologies, or maybe between off-line and on-line ontologies: the 2089
former are only accessed from time to time for reference purposes, while the latter support core system’s functionalities. 2090
 2091

7.4.3 Meta-Level Ontologies 2092

A further, separate kind of ontology is constituted by what have been called representation ontologies [Van Heijst et al. 2093
1997] They are in fact meta-level ontologies, describing a classification of the primitives used by a knowledge 2094
representation language (like concepts, attributes, relations...). An example of a representation ontology is the OKBC 2095
ontology, used to support translations within different knowledge representation languages. A further example is the 2096
ontology of meta-level primitives presented in [Guarino et al. 94], which differs from the OKBC Ontology in assuming a 2097
non-neutral ontological commitment for the representation primitives. 2098
 2099

7.5 References 2100

Genesereth, M. R. and Nilsson, N. J. 1987. Logical Foundation of Artificial Intelligence. Morgan Kaufmann, Los Altos, 2101
California. 2102
Gruber, T. R. 1995. Toward Principles for the Design of Ontologies Used for Knowledge Sharing. International Journal 2103
of Human and Computer Studies, 43(5/6): 907-928. 2104
Guarino, N. 1998. Formal Ontology in Information Systems. In N. Guarino (ed.) Formal Ontology in Information 2105
Systems. Proceedings of FOIS'98, Trento, Italy, 6-8 June 1998. IOS Press, Amsterdam: 3-15. 2106
Guarino, N., Carrara, M., and Giaretta, P. 1994. An Ontology of Meta-Level Categories. In D. J., E. Sandewall and P. 2107
Torasso (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International 2108
Conference (KR94). Morgan Kaufmann, San Mateo, CA: 270-280. 2109

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

48

Guarino, N. and Giaretta, P. 1995. Ontologies and Knowledge Bases: Towards a Terminological Clarification. In N. 2110
Mars (ed.) Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing 1995. IOS Press, 2111
Amsterdam: 25-32. 2112
Van Heijst, G., Schreiber, A. T., and Wielinga, B. J. 1997. Using Explicit Ontologies in KBS Development. International 2113
Journal of Human and Computer Studies, 46: 183-292. 2114

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

49

8 Informative Annex B — Guidelines to Define a New Ontology20 2115

8.1 Set of Principles to Useful in the Development of Ontologies 2116

• Clarity and objectivity: The ontology should provide a glossary of the vocabulary used in providing objective 2117
definitions and precise meaning in natural language form. 2118

• Completeness: A definition expressed by a necessary and sufficient condition is preferred over a partial definition. 2119

• Coherence: It should permit inferences that are consistent with the definitions. 2120

• Maximal monotonic extendibility: New general or specialised terms should be included in the ontology in such a 2121
way that does not require the revision of the existing definitions. 2122

• Minimal ontological commitment: It should make as few axioms as possible about the world being modeled. 2123

• Ontological Distinction Principle: Classes carrying different identity criteria should be disjoint. This principle is 2124
discussed in more detail in [12]. 2125

8.2 Ontology Development Process 2126

The ontology development process refers to the tasks you carry out when building ontologies. Adapting the IEEE 2127
software development process to ontology development process, the tasks identified are classified into three categories 2128
as shown in figure 12. 2129
 2130

Project-Management
Activities

 Development-Oriented
Activities

 Integral
Activities

 Pre-development
Planning Specify Acquire Knowledge

Control Development Evaluate
 Conceptualise
Quality Assurance Formalize Document
 Integrate
 Implement Configuration

Management

 Post-development
 Maintenance

Figure 12: Ontology development process (proposition from [1]) 2131

8.2.1 Project Management Activities 2132

Their main aim is to assure a well-running ontology. These tasks are usual in the classical software development 2133
process. They are simply briefly reminded: 2134
 2135
• Planning: It is the ordered list of the tasks to be done, represented for example by Gantt diagrams. They also 2136

provide information on the resources allocated to the different tasks (i.e. human, budget, software tools, hardware 2137
platform). 2138

20 The annex is mainly a slight adaptation of the reference [1].

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

50

• Control: Its goal is to guarantee that the planned tasks are done in the way they were intended to be performed. 2139
This should prevent typically from delays, errors and omission. 2140

• Quality assurance: It assures that each delivery of tasks is compliant to a given quality standard. 2141

8.2.2 Development Activities 2142

The following tasks describe the practical skills, techniques and methods used to develop an ontology: 2143
 2144
• Specify: The scope of the ontology under consideration must be defined, its goal, its foreseen usage and end-2145

users’ needs. The degree of formality of the writing of this requirement specification may vary, from informal text to 2146
more structured framework (e.g. set of competence questions). 2147

• Conceptualise: Its goal is to build a conceptual model that describes the problem and its solution. 2148

• Formalize: This activity transforms the conceptual model into a formal model that is semi-computable. Conceptual 2149
graphs, frame-oriented or description logic representations could be used to formalize the ontology. 2150

• Integrate: Ontologies are built to be reused. Accordingly, duplication of work in building ontologies has even less 2151
sense than in the traditional object-oriented software development. So, reuse of existing ontologies is encouraged. 2152
Nevertheless, a general method to integrate ontologically heterogeneous taxonomic knowledge is not known. This 2153
specification allows the assertion of some relationships between ontologies, as described in section 3.3. 2154

• Implement: Codification of the ontology in a formal language. For a reference framework for selecting target 2155
languages see [7]. 2156

• Maintain: Additions and modifications of an ontology should be possible. 2157

8.2.3 Integral Activities 2158

These activities are prominent tasks, since all the development-oriented tasks are fully dependent on the quality 2159
achieved during these tasks. The interaction between development-oriented and integral activities will be explicated in 2160
the life cycle of the ontology (below). 2161
 2162
• Acquire knowledge: Elicitation of knowledge will be done via KBSs knowledge elicitation techniques [8]. As a 2163

result, the list of the sources of knowledge and the rough description of the techniques used in the elicitation 2164
process will be available. 2165

• Evaluate: Before publishing an ontology, make a technical judgement with respect to a framework of reference. 2166
See [9] [10]. 2167

• Document: To allow reuse and sharing of ontologies, a well written documentation is absolutely needed. 2168

• Configuration management: It is the task of keeping records of each release issued during the development of 2169
the ontology. This is a classical task in software development. 2170

8.2.4 Ontology Life Cycle 2171

This indicates the order and depth in which activities and tasks should be performed. So, the life cycle will exhibit the 2172
different states of the developed ontology: i.e. specification, conceptualization, formalization, integration, implementation 2173
and maintenance. Excepting the integration phase which is stressed here to be placed before the implementation for 2174
the purpose of reuse of already available ontologies, the life cycle resembles the life cycle of traditional software 2175
development. 2176
 2177

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

51

8.3 Methodology to Build Ontologies 2178

In general, methodologies give you a set of guidelines of how you should carry out the activities identified in the 2179
development process, what kinds of techniques are the most appropriate in each activity and what is produced at the 2180
end of each activity. 2181
 2182
One such methodology is given here as an example. 2183
 2184

8.3.1 Specification 2185

The goal of the specification is to produce either an informal, semi-formal or formal ontology specification document 2186
written in natural language. The following information should at least be included: 2187
 2188
1. Purpose of the ontology: its intended uses (e.g., teaching, manufacturing, arts, etc.), end-users (e.g., actor and 2189

roles) and use case scenarios (e.g., teacher, unit production manager, researcher, etc.). That is the clearly defined 2190
domain of application. 2191

2. Degree of formality used to codify the ontology. This ranges from informal natural language to a rigorous formal 2192
language. 2193

3. Scope of the ontology: the detailed summary of its content. 2194

The formality of the ontology specification document varies depending on whether a natural language, competency 2195
questions or a middle-out approach is used. 2196
 2197
For example in a middle-out approach, you can use a glossary of terms to define an initial set of primitive concepts and 2198
using these concepts to define new ones. It is also advisable to group concepts in concepts classification trees. The 2199
use of these intermediate representations will allow not only the verification, at the earliest stage, of relevant terms 2200
missed and their inclusion in the specification document, but also the removal of terms that are synonyms and irrelevant 2201
in the ontology. The goal of these checks is to guarantee the conciseness and completeness of the ontology 2202
specification document. The middle-out approach, as opposed to the classical bottom-up or top-down approaches, 2203
allows to identify some primary concepts of the ontology, in a first stage. Then, it allows to specialize or generalize 2204
when needed. As a result, the terms in use are more stable, and so less re-work and overall effort are required. 2205
 2206
As mentioned by some authors, and in fact already used in traditional software development at the analysis phase, the 2207
use of motivating scenarios (use cases), that present the problem as a story of problems or examples and a set of 2208
intuitive solutions, are very useful. Those scenarios could consist of a set of informal competency questions that are the 2209
questions that an ontology must be able to answer in natural language. Then, the set of informal competency questions 2210
are translated into a formal set of competency questions using first-order logic (or higher). This formal set is also used 2211
to evaluate the extensions of the ontology. 2212
 2213
Figure 13 shows a short example of such specification document in the domain of chemicals. 2214

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

52

 2215
Ontology Requirements Specification Document

Domain: Chemicals
Date: May, 15th 1996
Conceptualised-by: Chemical Products Association
Implemented-by: Software House Gmbh
Purpose:
Ontology about chemical substances to be used when information about chemical elements is required
in teaching, manufacturing and analysis. This ontology could be used to ascertain, e.g. the atomic
weight of the element Sodium.
Level of Formality: Semi-formal
Scope:
List of 103 elements of substances: Lithium, Sodium, Chlorine, ...
List of concepts: Halogens, noble-gases, semi-metal, metal,
List of properties and their values: atomic-number, atomic-weight, atomic-volume-at-20°C, ...
Sources of Knowledge:
Handbook of chemistry and Physics. 65th edition. CRC-Press Inc., 1984-1985.

Figure 13: Ontology requirements specification (from [1]) 2216

As an ontology specification document cannot be tested for overall completeness, someone may find new relevant term 2217
to be included at any time and anywhere. A good ontology specification document must have the following properties: 2218
 2219
• Conciseness: each and every term is relevant, and there are no duplicated or irrelevant terms. 2220

• Partial completeness: coverage of the terms. 2221

• Realism: meanings of the terms and relationships making sense in the domain. 2222

8.3.2 Knowledge Acquisition 2223

Knowledge acquisition is an independent phase in the ontology development process. However, it is coincident with 2224
other phases. Most of the acquisition is done simultaneously with the requirements specifications phase, and decreases 2225
as the ontology development process moves forward. 2226
 2227
Experts, books, handbooks, figures, tables and even other ontologies are sources of knowledge from which the 2228
knowledge can be elicited and acquired, used in conjunction with techniques such as: brainstorming, interviews, 2229
questionnaires, formal and informal texts analysis, knowledge acquisition tools, etc. ... For example, if you have no clear 2230
idea of the purpose of your ontology, the brainstorming technique, informal interviews with experts, and examination of 2231
similar ontologies will allow you to elaborate a preliminary glossary with terms that are potentially relevant. To refine the 2232
list of terms and their meanings, formal and informal texts analysis techniques on books and handbooks combined with 2233
structures and non-structured interviews with experts might help you to build concepts classification trees and to 2234
compare them with figures given in books. 2235
 2236

8.3.3 Ontology and Natural Language21 2237

One promising approach for establishing an ontology and acquire knowledge is to incorporate results from disciplines 2238
like linguistics. Researchers in terminology for example are interested in organizing domains from a conceptual point of 2239
view from the analysis of terms used to name concepts in texts. On the other hand, an ontology is based on the 2240
definition of a structured and formalized set of concepts, and a great part of it comes from text analysis, such as 2241
transcript of interviews, and technical documentation. In such cases, the theory of a domain can only be found by 2242
reaching concepts from terms. 2243
For several years, some researchers in terminology have identified a parallel between terminology as a practical 2244
discipline and artificial intelligence, in particular knowledge engineering. From a knowledge engineering point of view, 2245

21 Contribution from Univ. d’Orsay, Paris Sud, LRI (Chantal Reynaud)

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

53

we notice two trends. One trend is to propose to elicit knowledge by using automatic processing tools, widely used in 2246
linguistics. Another one is to establish a synergy between research works in artificial intelligence and in linguistics, by 2247
means of terminology. An overview of these developments is given below. 2248
 2249
Natural language processing tools may help to support modelling from texts in two ways. First, they can help to find the 2250
terms of a domain [Bou94], [BGG96] [OFR96]. Existing terminologies or thesauri may be reused and increased or new 2251
ones may be created. Second, they can help to structure a terminological base by identifying relations between 2252
concepts [Jou95] [JME95] [Gar97]. 2253
 2254
Three steps are necessary to find the terms of a domain. At the beginning, nominal groups are isolated from a corpus 2255
considered as being representative of the studied domain. Then, those that can't be chosen as terms because of 2256
morphological or semantic characteristics are eliminated. Finally, the nominal sequences that will be retained as terms 2257
are chosen. Usually, this last step requires a human expertise. 2258
 2259
Identifying relations between concepts is composed of three steps too. The first one identifies the co-occurrences of 2260
terms. Two terms are co-occurrent if they both appear in a given text window which may be defined in several ways: a 2261
number of words, a documentary segmentation (entire document, section), a syntactic cutting of sentences, ... The 2262
second step computes a similarity between terms with respect to contexts they share. Then, the third step can 2263
determine the terms that are semantically related. In most cases, identified relations are the following: semantic 2264
proximity, meronimy, causal or more specific relations. 2265
 2266
Some researchers have focussed on trying to benefit from approaches from both linguistics and knowledge 2267
engineering. They have studied mutual contributions, and their work has led them to elaborate the concept of 2268
Terminological Knowledge Base (TKB). This concept was first defined by Ingrid Meyer [SMe91] [MSB+92]. 2269
 2270
Building a TKB is seen as an intermediate model that helps toward the construction of a formal ontology. A TKB is a 2271
computer structure that contains conceptual data, represented in a network of domain concepts, but also linguistic data 2272
on the terms used to name the concepts. Thus a TKB contains three levels of entities: term, concept and text. It is 2273
structured by using three kinds of links. Relations between term and concept allow synonymy and paronimy to be 2274
considered. Relations between concepts compose the network of domain concepts. Relations between term and/or 2275
concept and text allow normalization choices to be justified or knowledge base to be documented. A TKB is interesting 2276
to build a KBS, especially because it gathers some linguistic information on terms used to name concepts on. This can 2277
enhance communication between experts, knowledge engineers and end-users, or be a great help for the knowledge 2278
engineer to choose the names of the concepts in the system. Nevertheless, if most researchers agree with its structure, 2279
problems still remain today about genericity and also about the construction and the exploitation of the corpus, which is 2280
very important in the construction of the TKB because it is the reference from which modelling choices will be justified. 2281
Current research continues in these directions. 2282
 2283

8.4 References 2284

[1] Assuncion Gomez-Pérez, "Knowledge Sharing and Reuse", Laboratorio de Intelligencia Artificial, Facultad de 2285
informatica, Universidad Politécnica de Madrid. 2286

[2] Guarino Nicola, "Understanding, building and using ontologies", International Journal of Human Computer Studies, 2287
Incorporating Knowledge Acquisition, Vol. 46, Number 2/3, February/March 1997. 2288

[3] Natalya Fridman Noy, Carole D. Hafner, "The State of the Art in Ontology Design: A survey and Comparative 2289
Review", College of Computer Science, Northeastern University, Boston, MA. 2290

[4] Gruber T., "Toward Principles for the design of Ontologies used for Knowledge Sharing. Technical report KSL-93-2291
04. Knowledge Systems Laboratory, Stanford University, CA., 1993. 2292

[5] Borgo S., Guarino N., Masolo C., "Stratified Ontologies: The case of Physical Objects. Workshop on Ontological 2293
Engineering, ECAI’96. Budapest, Hungary, pp. 17-28, 1996. 2294

[6] Farquar A., Fikes R., Pratt W., Rice J., "Collaborative Ontology Construction for Information Integration", Technical 2295
Report KSL-95-10. Knowledge Systems Laboratory, Stanford University, CA., 1995. 2296

[7] Speel et al., "Scalability of the performance of Knowledge Representation Systems". Towards very large 2297
knowledge bases, N. Mars editor, IOS Press, Amsterdam, pp. 173-184, 1995. 2298

[8] Uschold M., Grüninger M., "Ontologies: Principles, Methods and Applications", Knowledge Engineering review, 2299
Vol. 11, N° 2, June 1996. 2300

© 2000 Foundation for Intelligent Physical Agents FIPA Ontology Service

54

[9] Gomez-Pérez A., "A framework to verify knowledge sharing technology", Expert systems with application, Vol. 11, 2301
N° 4, pp. 519-529, 1996. 2302

[10] Gomez-Pérez A., "From Knowledge based systems to knowledge sharing technology : Evaluation and 2303
Assessment". Technical Report KSL-94-73. Knowledge Systems Laboratory, Stanford University, CA., 1994. 2304

[11] Borst P. and Akkermans H., "Engineering ontologies", Special issue : Using explicit ontologies in knowledge-based 2305
system development, HCS, Vol. 46, Number 2/3, pp. 365-406, February/March 1997. 2306

[12] Guarino, N., Some Ontological Principles for Designing Upper Level Lexical Resources. In Proceedings of First 2307
International Conference on Language Resources and Evaluation. Granada, Spain, ELRA - European Language 2308
Resources Association: 527-534, 1998. 2309

 2310
Natural Language based Knowledge acquisition references 2311

[BCo95] Bourigault D., Condamines A., "Réflexions autour du concept de base de connaissances Terminologiques", 2312
Dans les actes des journées nationales du PRC-IA, Nancy, 1995. 2313

[Bou94] Bourigault D., "LEXTER, un logiciel d'extraction de terminologie. Application ˆ l'acquisition des connaissances ˆ 2314
partir de textes", Thèse de l'Ecole des Hautes Etudes en Sciences Sociales (Paris), 1994. 2315

[BGG96] Bourigault D., Gonzalez-Mullier I., Gros C., "LEXTER, a natural Language Processing Tool for Terminology 2316
Extraction", actes de EURALEX'96 (Gšteborg), 1996. 2317

[Gar97] GARCIA D., "COATIS, an NLP System to Locate Expressions of Ations Connected by Causality Links", in Proc. 2318
10th European Workshop, EKAW'97, San Feliu de Guixols, Catalonia, Spain, LNAI 1319, pp. 347-352, October 2319
1997. 2320

[Jou95] Jouis Ch., "SEEK, un logiciel d'acquisition des connaissances utilisant un savoir linguistique sans employer de 2321
connaissances sur le monde externe", Actes des 6èmes Journées Acquisition et Validation (JAVA'95), Grenoble, pp. 2322
159-172, 1995. 2323

[JME95] Jouis Ch., Mustafa-Elhadi W., "Conceptual Modeling of database Schema using linguitic knowledge. 2324
Application to terminological Knowledge bases", First Workshop on Application of Natural language to Databases 2325
(NLDB'95), Versailles, Juin 95, pp. 103-118, 1995. 2326

[MSB+92] Meyer I., Skuce D., Bowker L., Eck K., "Toward a new generation of terminological resources: an experiment 2327
in building a terminological knowledge base. In Proceedings of the 14th International Conference on Computational 2328
Linguistics, Nantes, pp. 956-960, 1992. 2329

[OFR96] Oueslati R., Frath P., Rousselot F., "Term identification and Knowledge Extraction", International Conference 2330
on Applied Natural Language and Artificial Intelligence, Montreal, June 1996. 2331

[SMe91] Skuce D., Meyer I., Terminology and knowledge acquisition: exploring a symbiotic relationship. In Proc. 6th 2332
Knowledge Acquisition for Knowledge-Based System Workshop, Banff, pp. 29/1-29/21. 2333

[HA98] Houssem Assadi, Construction of a regional ontology from text and its use within a documentary system, 2334
FOIS’98, pp. 236-249, Trento, June 1998. 2335

 2336

