FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA Agent Message Transport Envelope
Representation in Bit-Efficient Encoding

Specification

Document title FIPA AMT Envelope Representation in Bit-Efficient Encoding Specification
Document number |[PC00088 Document source FIPA Gateways
Document status Preliminary Date of this status 2000/10/19
Supersedes None

Contact gateways@fipa.org

Change history

2000/10/19 [Initial draft

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/

Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the

use of this specification.

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies.

The members of FIPA are individually and collectively committed to open competition in the development of agent-based
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership,
governmental body or international organization without restriction. In particular, members are not bound to implement or
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification
can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification
may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their
current status may be found in the FIPA List of Specifications. A list of terms and abbreviations used n the FIPA
specifications may be found in the FIPA Glossary.

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA
specifications and upcoming meetings may be found at http://www.fipa.org/.

Contents

1
2

3
4

STl 0] o1 PP PP PP 1
Bit-Efficient ENVEIOPE REPIESENTALION. e i ittt e e e e e e e e e e e e e en s e et e e e e et e eeneanaaannns 2
2.1 COMPONENT NBITIE .ttt e e et et et e et et e e et e e et e et e et e e et e e e e e e e e e e e e e e e e e eeanas 2
2.2 ACC Processing of Bit-EffiCient ENVEIOPEvuniiiii et e e e e e eans 2
2.3 Concrete MesSSage ENVEIOPE SYNIAXi.uieiiii it e et et et e e e e e e e et e e e et e et e an e ean e e e e eeaeenns 3
2.4 NOtes 0N the Grammar RUIBSiiuiiii et ettt e e et e e et e e e e eanees 5
=T T 0] =P 7
RS (=T (=T 0ol ST PP PPPPI 11

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

1 Scope

This document is part of the FIPA specifications and deals with message transportation between inter-operating agents.
This document also forms part of the FIPA Agent Management Specification [FIPA00023] and contains specifications for:

Syntactic representation of a message envelope in bit-efficient form.

Informative examples of the bit-efficient envelope syntax are given in Section 3, Examples.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

2 Bit-Efficient Envelope Representation

This section gives the concrete syntax for the message envelope specification that must be used to transport messages
over a Message Transport Protocol (MTP - see [FIPAOO067]). This concrete syntax is designed to complement

[FIPA00069].

The message envelope transport syntax is expressed in standard EBNF format (see Table 1).

Grammar rule component

Example

Terminal tokens are enclosed in double quotes

"

Non-terminals are written as capitalised identifiers

Expressi on

Square brackets denote an optional construct

[

Optional Arg]

Vertical bars denote an alternative between choices Integer | Fl oat
Asterisk denotes zero or more repetitions of the preceding expression Digit*

Plus denotes one or more repetitions of the preceding expression Al pha+
Parentheses are used to group expansions (A| B)*

Productions are written with the non-terminal name on the left-hand side,
expansion on the right-hand side and terminated by a full stop

ANonTer ni nal

"term nal ".

0x?? is a hexadecimal byte

0x00

Table 1: EBNF Rules

N.B. White space is not allowed between tokens.

2.1 Component Name
The name assigned to this component is:

fipa.nms.env.rep.bitefficient.std

2.2 ACC Processing of Bit-Efficient Envelope

According to [FIPA00067], a FIPA compliant ACC is not allowed to modify any element of the envelope that it receives. It
is however allowed to update a value in any of the envelope’s slots by adding a new Ext Envel ope element at the
beginning of the nmessageEnvel opes sequence. This new element is required to have only those slot values that the
ACC wishes to add or update plus a new Recei vedObj ect element”.

The following pseudo code algorithm may be used to obtain the latest values for each of the envelope’s slots.

Envel opeWthAl |l Slots := new enpty Envel ope
while (not all envel opes processed) {
t enpEnvel ope = get Next Envel ope;
foreach slot in an envel ope {
if ((this slot has no value in Envel opeWthAll Sl ots)
AND (this slot has a value in tenpEnvel ope))
then copy the value of this slot to Envel opeWthAll Sl ots

}

Envel opeW t hAl | Sl ot s now contains the latest values for all the slots set in the envelope.

! The newRecei vedObj ect is forced, syntactically, to be in all envelopes of the nessageEnvel opes sequence except the first one.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

2.3 Concrete Message Envelope Syntax

MessageEnvel ope = (Ext Envel ope) * BaseEnvel ope Payl oad

BaseEnvel ope = BaseEnvel opeHeader (Slot)* EndCOf Envel ope

Ext Envel ope = Ext Envel opeHeader (Slot)* EndCOf Envel ope.

BaseEnvel opeHeader = BaseMsgl d EnvLen ACLRepresentation Date.

Ext Envel opeHeader = Ext Msgld EnvLen Recei vedObj ect .

EnvLen = Lenlé6
| JunboEnvel ope. /* See comment 1 (Section 2.4) */

JunboEnvel ope = EnptylLenl6 Len32.

BaseMsgl d = OxFE

Ext Msgl d = OxFD

EndCf Envel ope = EndOf Col | ecti on.

Payl oad = /* See comment 2 (Section 2.4) */

Sl ot = PredefinedSl ot
| UserDefinedSl ot. /* See comment 5 (Section 2.4) */

Pr edef i nedSl ot = 0x02 AgentldentifierSequence /* to */
| O0x03 Agentldentifier /[* from */
| O0x04 ACLRepresentation /* acl-representation */
| 0x05 Comments /* coments */
| 0x06 Payl oadLength /* payl oad-1ength */
| 0x07 Payl oadEncodi ng /* payl oad- encodi ng */
| 0x08 Encrypted /* encrypted */
| 0x09 I ntendedRecei ver /* intended-receiver */
| OxOa Recei vedObj ect /* received */
| OxOb Transport Behavi our. /* transport-behavi our */

ACLRepresentati on User Def i nedACLRepr esent ati on

| O0x10 /* fipa.acl.rep.bitefficient.std [FI PAO0069]*/
| Ox11 /* fipa.acl.rep.string.std [FI PAOO0O70] */
| O0x12. /* fipa.acl.rep.xm .std [FI PAOO071] */

Dat e = Bi nDat eTi meToken

Comment s = Nul | Term nat edStri ng.

Payl oadLengt h = Bi nNunber .

Payl oadEncodi ng = Nul | Term nat edStri ng.

Encrypt ed = StringSequence.

I nt endedRecei ver = Agentldentifier Sequence

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

Transport Behavi our = Any.

User Defi nedACLRepresent ati on
= 0x00 Nul | Term natedStri ng.

Recei vedhj ect = By
Dat e
[From
[1d]
[Vi a]
EndCOf Col | ect i on.
By = URL.
From = 0x02 URL.
Id = 0x03 Nul | Term nat edStri ng.
Vi a = 0x04 Nul | Term natedStri ng.
Bi nNunber = Digits. /* See comment 4 (Section 2.4) */
Digits = CodedNunber +.
Nul | Ter mi natedStri ng = String 0x00.
User Def i nedSl ot = 0x00 Keyword Nul | Term natedString.
KeyWord = Nul | Term nat edStri ng.
Any = 0x14 Nul | Term natedString

| BytelLenEncoded.
Byt eLenEncoded 0x16 Len8 ByteSequence
0x17 Lenl6 Byt eSequence
0x19 Len32 Byt eSequence.

Byt eSequence = Byte*.
Agent I denti fi er Sequence = (Agentldentifier)* EndOf Col |l ection.

Agent I dentifier = 0x02 Agent Nane
[Addr esses]
[Resol ver s]
(User Def i nedPar aneter) *
EndCOf Col | ect i on.

Agent Name = Nul | Term nat edStri ng.
Addr esses = 0x02 Url Sequence.
Resol vers = 0x03 AgentldentifierSequence.

User Def i nedPar anet er = 0x04 Nul | Term natedString Any.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

Ur | Sequence = (URL)* EndOf Col | ecti on.

URL = Nul | Term nat edStri ng.

StringSequence = (Null Term natedString)* EndOf Col | ecti on.
Bi nDat eTi meToken = 0x20 Bi nDate

| 0x21 BinDate TypeDesi gnator.

Bi nDat e = Year Month Day Hour M nute Second M II|isecond.
/* See comment 3 (Section 2.4) */
EndOf Col | ection = 0xO01.
Enpt yLen16 = 0x00 0x00.
Len8 = Byte. /* See comment 6 (Section 2.4) */
Lenl6 = Short. /* See comment 6 (Section 2.4) */
Len32 = Long. /* See comment 6 (Section 2.4) */
Year = Byte Byte.
Mont h = Byte.
Day = Byte.
Hour = Byte.
M nut e = Byte.
Second = Byte.
MI1lisecond = Byte Byte.
String = /* As in [FlPA00070] */
CodedNunber = /* See comment 4 (Section 2.4) */
TypeDesi gnat or = /* As in [FIPAO0OO70] */

2.4 Notes on the Grammar Rules

1. Normally, the length of an envelope does not exceed 65536 bytes (2*16). Therefore, only two bytes are reserved for
envelope length (len16). However, the syntax also allows envelopes with greater lengths. In this case, the sender sets
the reserved envelope length slot (two bytes) to length zero, and the following four bytes are used to represent the real
length (maximum envelope length is therefore 2732 bytes).

The length of the envelope comprises all the parts of the envelope, including the message identifier and the length slot
itself. The length of the envelope is expressed in the network byte order.

2. The payload (ACL message) starts at the first byte after the BaseEnvel ope. White space is allowed between the
envelope and the ACL message only if the syntax of ACL allows this. For instance, fi pa. acl . rep. string. std
allows white space, butfi pa. acl . rep. bitefficient.std does not.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

3. Dates are coded as numbers, that is, four bits are reserved for each ASCII number (see comment 4 below).
Information as to whether the type designator is present or not is coded into an identifier byte. These slots always
have static length (two bytes for year and milliseconds, one byte for other components).

4. Numbers are coded by reserving four bits for each digit in the number's ASCII representation, that is, two ASCII
numbers are coded into one byte. Table 2 shows a 4-bit code for each number and special codes that may appear in
ASCII coded numbers.

If the ASCII presentation of a number contains an odd number of characters, the last four bits of the coded number are
set to zero (the Paddi ng token), otherwise an additional 0x00 byte is added to the end of the coded number. If the
number to be coded is either an integer, decimal number, or octal number, the identifier byte 0x12 is used. For
hexadecimal numbers, the identifier byte 0x13 is used. Hexadecimal numbers are converted to integers before
coding (the coding scheme does not allow characters from a through f to appear in number form).

Token Code Token Code
Paddi ng 0000 7 1000
0 0001 8 1001
1 0010 9 1010
2 0011 + 1100
3 0100 E 1101
4 0101 - 1110
5 0110 . 1111
6 0111

Table 2: Binary Representation of Number Tokens

5. All envelope parameters defined in [FIPAOO067] have a predefined code. If an envelope contains a user-defined
parameter, an extension mechanism is used (byte 0x00). The names of the user-defined envelope parameters should
have the prefix “X- ConpanyNane- ",

6. Byt e is a one-byte code word, Short is a short integer (two bytes, network byte order) and Long is a long integer
(four bytes, network byte order).

© 2000 Foundation for Intelligent Physical Agents

3 Examples

1. Here is a simple example of an envelope encoded using XML representation:

<?xm version="1.0""?7>

<env
<p

</

el ope>
arans i ndex="1">
<t o>
<agent-identifier>
<nanme>r ecei ver @ 0o. conk/ nane>
<addr esses>
<url>http://foo.comacc</url>
</ addr esses>
</agent-identifier>
</to>
<fromp
<agent-identifier>
<nane>sender @ar . conk/ nane>
<addr esses>
<url|>http://bar.comacc</url>
</ addr esses>
</agent-identifier>
</frone

<acl -representati on>fi pa.acl.rep.xm .std</acl-representati on>
<dat €>20000508T042651481</ dat e>
<encrypt ed>no encryption</encrypted>

<r ecei ved>
<received-by value="http://foo.com acc" />
<recei ved-dat e val ue="20000508T042651481" />
<recei ved-id val ue="123456789" />

</received>

par ams>

</ envel ope>

Using the bhit-efficient representation, the envelope becomes:

Oxfe
‘r
0x02
‘c
c
o]
y
r
0x62

0x00 0x97 0x12 0x20 0x31 0Ox11 0Ox06 0x19 0Ox15 0x37 0x62 0x59 0x20 0x02
- oA - L VAR - L G =/ A o M o M ‘o’

B ¢ S S AL o KA A A SLNN o KA o N o ‘i
‘c’ O0x00 0x01 0x01 0x02 ‘s’ ‘e ‘n ‘d ‘e ‘r' '@ ‘ ‘a’
‘o’ ‘m 0x00 0x02 ‘h” “t' *“t* ‘p~ ‘“:" </ [‘b ‘r’
m ‘e ‘a’ ‘¢’ ‘¢’ 0x00 0x01 0Ox01 0x08 ‘n’ ‘o’ L ‘ ‘n’
‘pr 't it o ‘n’ 0x00 OxO0a ‘h* ‘t* tr tp ittt
L ‘¢’ ‘o

0x59 0x20 0x03 ‘1"

n
' m ‘e ‘a’ ‘¢’ ‘¢’ 0x00 0x20 0x31 0Ox11 0Ox06 0x19
27 3 4 5 e 7T 8 9 0x00 0x01

FIPA AMT Envelope Representation in Bit-Efficient Encoding

0x03 0x02
‘m 0x00
1/1 lal
Cpre
oo
IS
lbl lal
0x15 0x37

The length of the original message is about 620 bytes and the encoded result is 151 bytes giving a compression ratio of
about 4:1.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding
2. Here is an example that covers all aspects of an envelope.

<?xml version="1.0"7?>
<envel ope>
<parans i ndex="1">
<t o>
<agent-identifier>
<name>r ecei ver @ o0o. conk/ name>
<addr esses>
<url>http://foo.com acc</url >
</ addr esses>
<resol ver s>
<agent-identifier>
<name>r esol ver @ar . conk/ name>
<addr esses>
<url>http://bar.com accl</url >
<url>http://bar.com acc2</url >
<url>http://bar.com acc3</url >
</ addr esses>
</ agent-identifier>
</resol vers>
</ agent-identifier>
</to>

<fronp
<agent-identifier>
<name>sender @ar . conk/ nane>
<addr esses>
<url>http://bar.com acc</url >
</ addr esses>
<resol ver s>
<agent-identifier>
<name>r esol ver @ oobar . conk/ name>
<addr esses>
<url >http://foobar.com accl</url >
<url >http://foobar.com acc2</url >
<url>http://foobar.com acc3</url >
</ addr esses>
</ agent-identifier>
</resol vers>
</ agent-identifier>
</fronp

<conmment s>No conment s! </ comment s>

<acl -representati on>fi pa.acl.rep.xm .std</acl-representati on>
<payl oad- encodi ng>US- ASCI | </ payl oad- encodi ng>

<dat e>20000508T042651481</ dat e>

<encrypted>no encryption</encrypted>

<i nt ended-recei ver >

<agent-identifier>
<nane>i nt endedr ecei ver @ oobar . conx/ nane>

© 2000 Foundation for Intelligent Physical Agents

<addr esses>

<url >http://foobar.com accl</url>
<url >http://foobar.com acc2</url >
<url >http://foobar.com acc3</url >

</ addr esses>
<resol vers>
<agent-identifier>

<nane>r esol ver @ oobar . conk/ nane>

<addr esses>

<url >http://foobar.com accl</url>
<url >http://foobar.com acc2</url >
<url >http://foobar.com acc3</url >

</ addr esses>
<resol vers>
<agent-identifier>

FIPA AMT Envelope Representation in Bit-Efficient Encoding

<nane>r esol ver @ oobar . conk/ nane>

<addr esses>

<url >http://foobar.com accl</url>
<url >http://foobar.com acc2</url >
<url >http://foobar.com acc3</url >

</ addr esses>
</ agent-identifier>
</resol vers>
</ agent-identifier>
</resol vers>
</ agent-identifier>
</intended-recei ver>

<recei ved>

<recei ved-by value="http://foo.com acc" />
<recei ved-from val ue="http://foobar.conf acc" />

<recei ved-date val ue="20000508T042651481"
/>

<recei ved-id val ue="123456789"

/>

<received-via value="http://bar.conf acc" />

</recei ved>
</ par ans>

</ envel ope>

Using the bit-efficient representation, the envelope becomes:

Oxfe 0x01 Oxea 0x12 0x20 0x31 Ox11 0x06
‘e’ ‘c’ ‘e’ i v’ ‘e’ r’ ‘@
B (N S A L A A
‘c’ O0x00 0x01 0x03 0x02 ‘s’ ‘e ‘n’
‘o’ ‘m 0x00 0x02 ‘h* *t’ ‘t’ ‘p
‘m /" *a ‘¢’ ‘c’ 0x00 0x01 0x07
0x08 ‘n’ ‘o’ L ‘e’ ‘n’ ‘c’ r’
0x02 *i’ ‘n’ Y ‘e’ ‘n’ d ‘e’
‘@ “f ‘o’ ‘o’ ‘b’ ta’ r’ L
B L e o N Y
‘1 0x00 ‘h t* tr tp it
‘o 'm /7 fa ‘c¢’ ‘e’ 27 0x00
‘o’ ‘b’ ta’ r’ L ‘c’ ‘o’ 'm

0x19

f)

0x15 0x37 0x62 0x59 0x20 0x02 0x02 ‘r’
‘o’ ‘o ‘.7 ‘¢ ‘o ‘m 0x00 0x02
‘ol . ‘¢ ‘o 'm) ta tcel
‘e’ f'r’ '@ ‘b tar f‘rr 0t
s 'p tat ot et tol
B - U S ONN I IR 0)' 010
‘pr 't it o’ ‘n’ 0x00 0x01 0x09
S S - L oL - S A - S O
‘o’ ‘m 0x00 0x02 “h* “t’ *“t* ‘'p
Lo f'e 0 'm 1 tat et el
‘fr o ‘o ‘b ta ‘r .7 tcl
L S SR ¢ B A A S o}
‘a’ ‘¢’ ‘¢’ "3 0x00 0x01 0x03 0x02

© 2000 Foundation for Intelligent Physical Agents

r e S
‘o0 'm

P o o’
‘fr o o
Gt g p
‘ao ‘c’ e’
‘fr o o
Y A
0x00 ‘h" *“t’
‘m T ta
‘b fa’ ‘r’
R D’
0x00 0x20 0x31
Y A
0x03 ‘1" 2
‘proir e

0x00

xly
xhy
x/y

x/y

0x11 0x06

o
‘ 4,
‘ by

0x00

m
lf!

0x15

a
‘6
‘r

‘@

o " O O

fy
xty
ay

o

0x62

‘g
‘c

O+ 0 0O

FIPA AMT Envelope Representation in Bit-Efficient Encoding

Cfo
cpo
0x00
tm

by

3@

c

‘g

o

o]
e
‘hy
e
‘a
S
0x00 O

‘o
o]
p
c
c

0x59 0x20 0x02

o

0x00 0x01

m

o

—h

—

o))

-

o

- X
o

e

b
0
t

c

] | 1
] hy
] / 1
‘a
] / 1

0x00

m
lh!
l/!

0x01

a

=

- O
S X ST 9 < 00T 0w

]

xfy

0x01 OxO0a

a
cr
‘c
Chy
‘c

The length of the original message is about 2400 bytes and the encoded result is 490 bytes giving a compression ratio of

about 5:1.

10

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

4 References

[FIPAOO067] FIPA Agent Message Transport Service Specification. Foundation for Intelligent Physical Agents, 2000.
http://ww. fipa.org/specs/fipa00067/

[FIPAOO069] FIPA ACL Message Representation in Bit-Efficient Encoding Specification. Foundation for Intelligent
Physical Agents, 2000.
http://ww. fipa.org/specs/fipa00069/

[FIPAOOO70] FIPA ACL Message Representation in String Specification. Foundation for Intelligent Physical Agents,
2000.
http://ww. fipa.org/specs/fipa00070/

[FIPAOOO71] FIPA ACL Message Representation in XML Specification. Foundation for Intelligent Physical Agents,
2000.
http://ww. fipa.org/specs/fipa00071/

11

