

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA Agent Message Transport Envelope
Representation in Bit-Efficient Encoding

Specification

Document title FIPA AMT Envelope Representation in Bit-Efficient Encoding Specification
Document number PC00088 Document source FIPA Gateways
Document status Preliminary Date of this status 2000/10/19
Supersedes None
Contact gateways@fipa.org
Change history
2000/10/19 Initial draft

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/

Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the
use of this specification.

 ii

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies.

The members of FIPA are individually and collectively committed to open competition in the development of agent-based
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership,
governmental body or international organization without restriction. In particular, members are not bound to implement or
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification
can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification
may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their
current status may be found in the FIPA List of Specifications. A list of terms and abbreviations used in the FIPA
specifications may be found in the FIPA Glossary.

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA
specifications and upcoming meetings may be found at http://www.fipa.org/.

 iii

Contents

1 Scope... 1
2 Bit-Efficient Envelope Representation... 2

2.1 Component Name ... 2
2.2 ACC Processing of Bit-Efficient Envelope .. 2
2.3 Concrete Message Envelope Syntax ... 3
2.4 Notes on the Grammar Rules ... 5

3 Examples ... 7
4 References...11

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 1

1 Scope
This document is part of the FIPA specifications and deals with message transportation between inter-operating agents.
This document also forms part of the FIPA Agent Management Specification [FIPA00023] and contains specifications for:

• Syntactic representation of a message envelope in bit-efficient form.

Informative examples of the bit-efficient envelope syntax are given in Section 3, Examples.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 2

2 Bit-Efficient Envelope Representation
This section gives the concrete syntax for the message envelope specification that must be used to transport messages
over a Message Transport Protocol (MTP - see [FIPA00067]). This concrete syntax is designed to complement
[FIPA00069].

The message envelope transport syntax is expressed in standard EBNF format (see Table 1).

Grammar rule component Example
Terminal tokens are enclosed in double quotes "("
Non-terminals are written as capitalised identifiers Expression
Square brackets denote an optional construct ["," OptionalArg]
Vertical bars denote an alternative between choices Integer | Float
Asterisk denotes zero or more repetitions of the preceding expression Digit*
Plus denotes one or more repetitions of the preceding expression Alpha+
Parentheses are used to group expansions (A | B)*
Productions are written with the non-terminal name on the left-hand side,
expansion on the right-hand side and terminated by a full stop

ANonTerminal = "terminal".

0x?? is a hexadecimal byte 0x00

Table 1: EBNF Rules

N.B. White space is not allowed between tokens.

2.1 Component Name
The name assigned to this component is:

fipa.mts.env.rep.bitefficient.std

2.2 ACC Processing of Bit-Efficient Envelope
According to [FIPA00067], a FIPA compliant ACC is not allowed to modify any element of the envelope that it receives. It
is however allowed to update a value in any of the envelope’s slots by adding a new ExtEnvelope element at the
beginning of the messageEnvelopes sequence. This new element is required to have only those slot values that the
ACC wishes to add or update plus a new ReceivedObject element1.

The following pseudo code algorithm may be used to obtain the latest values for each of the envelope’s slots.

EnvelopeWithAllSlots := new empty Envelope
while (not all envelopes processed) {
 tempEnvelope = getNextEnvelope;
 foreach slot in an envelope {

 if ((this slot has no value in EnvelopeWithAllSlots)
 AND (this slot has a value in tempEnvelope))
 then copy the value of this slot to EnvelopeWithAllSlots
 }
}

EnvelopeWithAllSlots now contains the latest values for all the slots set in the envelope.

1 The new ReceivedObject is forced, syntactically, to be in all envelopes of the messageEnvelopes sequence except the first one.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 3

2.3 Concrete Message Envelope Syntax

MessageEnvelope = (ExtEnvelope)* BaseEnvelope Payload.

BaseEnvelope = BaseEnvelopeHeader (Slot)* EndOfEnvelope.

ExtEnvelope = ExtEnvelopeHeader (Slot)* EndOfEnvelope.

BaseEnvelopeHeader = BaseMsgId EnvLen ACLRepresentation Date.

ExtEnvelopeHeader = ExtMsgId EnvLen ReceivedObject.

EnvLen = Len16
 | JumboEnvelope. /* See comment 1 (Section 2.4) */

JumboEnvelope = EmptyLen16 Len32.

BaseMsgId = 0xFE.

ExtMsgId = 0xFD.

EndOfEnvelope = EndOfCollection.

Payload = /* See comment 2 (Section 2.4) */

Slot = PredefinedSlot
 | UserDefinedSlot. /* See comment 5 (Section 2.4) */

PredefinedSlot = 0x02 AgentIdentifierSequence /* to */

| 0x03 AgentIdentifier /* from */
| 0x04 ACLRepresentation /* acl-representation */
| 0x05 Comments /* comments */

 | 0x06 PayloadLength /* payload-length */
 | 0x07 PayloadEncoding /* payload-encoding */
 | 0x08 Encrypted /* encrypted */
 | 0x09 IntendedReceiver /* intended-receiver */
 | 0x0a ReceivedObject /* received */
 | 0x0b TransportBehaviour. /* transport-behaviour */

ACLRepresentation = UserDefinedACLRepresentation
 | 0x10 /* fipa.acl.rep.bitefficient.std [FIPA00069]*/
 | 0x11 /* fipa.acl.rep.string.std [FIPA00070] */
 | 0x12. /* fipa.acl.rep.xml.std [FIPA00071] */

Date = BinDateTimeToken.

Comments = NullTerminatedString.

PayloadLength = BinNumber.

PayloadEncoding = NullTerminatedString.

Encrypted = StringSequence.

IntendedReceiver = AgentIdentifierSequence.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 4

TransportBehaviour = Any.

UserDefinedACLRepresentation
 = 0x00 NullTerminatedString.

ReceivedObject = By

 Date
 [From]
 [Id]
 [Via]
 EndOfCollection.

By = URL.

From = 0x02 URL.

Id = 0x03 NullTerminatedString.

Via = 0x04 NullTerminatedString.

BinNumber = Digits. /* See comment 4 (Section 2.4) */

Digits = CodedNumber+.

NullTerminatedString = String 0x00.

UserDefinedSlot = 0x00 Keyword NullTerminatedString.

KeyWord = NullTerminatedString.

Any = 0x14 NullTerminatedString
 | ByteLenEncoded.

ByteLenEncoded = 0x16 Len8 ByteSequence
 | 0x17 Len16 ByteSequence
 | 0x19 Len32 ByteSequence.

ByteSequence = Byte*.

AgentIdentifierSequence = (AgentIdentifier)* EndOfCollection.

AgentIdentifier = 0x02 AgentName
 [Addresses]
 [Resolvers]
 (UserDefinedParameter)*
 EndOfCollection.

AgentName = NullTerminatedString.

Addresses = 0x02 UrlSequence.

Resolvers = 0x03 AgentIdentifierSequence.

UserDefinedParameter = 0x04 NullTerminatedString Any.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 5

UrlSequence = (URL)* EndOfCollection.

URL = NullTerminatedString.

StringSequence = (NullTerminatedString)* EndOfCollection.

BinDateTimeToken = 0x20 BinDate
 | 0x21 BinDate TypeDesignator.

BinDate = Year Month Day Hour Minute Second Millisecond.
 /* See comment 3 (Section 2.4) */
EndOfCollection = 0x01.

EmptyLen16 = 0x00 0x00.

Len8 = Byte. /* See comment 6 (Section 2.4) */

Len16 = Short. /* See comment 6 (Section 2.4) */

Len32 = Long. /* See comment 6 (Section 2.4) */

Year = Byte Byte.

Month = Byte.

Day = Byte.

Hour = Byte.

Minute = Byte.

Second = Byte.

Millisecond = Byte Byte.

String = /* As in [FIPA00070] */

CodedNumber = /* See comment 4 (Section 2.4) */

TypeDesignator = /* As in [FIPA00070] */

2.4 Notes on the Grammar Rules
1. Normally, the length of an envelope does not exceed 65536 bytes (2^16). Therefore, only two bytes are reserved for

envelope length (len16). However, the syntax also allows envelopes with greater lengths. In this case, the sender sets
the reserved envelope length slot (two bytes) to length zero, and the following four bytes are used to represent the real
length (maximum envelope length is therefore 2^32 bytes).

The length of the envelope comprises all the parts of the envelope, including the message identifier and the length slot
itself. The length of the envelope is expressed in the network byte order.

2. The payload (ACL message) starts at the first byte after the BaseEnvelope. White space is allowed between the

envelope and the ACL message only if the syntax of ACL allows this. For instance, fipa.acl.rep.string.std
allows white space, but fipa.acl.rep.bitefficient.std does not.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 6

3. Dates are coded as numbers, that is, four bits are reserved for each ASCII number (see comment 4 below).
Information as to whether the type designator is present or not is coded into an identifier byte. These slots always
have static length (two bytes for year and milliseconds, one byte for other components).

4. Numbers are coded by reserving four bits for each digit in the number’s ASCII representation, that is, two ASCII

numbers are coded into one byte. Table 2 shows a 4-bit code for each number and special codes that may appear in
ASCII coded numbers.

If the ASCII presentation of a number contains an odd number of characters, the last four bits of the coded number are
set to zero (the Padding token), otherwise an additional 0x00 byte is added to the end of the coded number. If the
number to be coded is either an integer, decimal number, or octal number, the identifier byte 0x12 is used. For
hexadecimal numbers, the identifier byte 0x13 is used. Hexadecimal numbers are converted to integers before
coding (the coding scheme does not allow characters from a through f to appear in number form).

Token Code Token Code
Padding 0000 7 1000
0 0001 8 1001

1 0010 9 1010

2 0011 + 1100

3 0100 E 1101

4 0101 - 1110

5 0110 . 1111

6 0111

Table 2: Binary Representation of Number Tokens

5. All envelope parameters defined in [FIPA00067] have a predefined code. If an envelope contains a user-defined

parameter, an extension mechanism is used (byte 0x00). The names of the user-defined envelope parameters should
have the prefix “X-CompanyName-”.

6. Byte is a one-byte code word, Short is a short integer (two bytes, network byte order) and Long is a long integer

(four bytes, network byte order).

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 7

3 Examples

1. Here is a simple example of an envelope encoded using XML representation:

<?xml version="1.0"?>
<envelope>
 <params index="1">
 <to>
 <agent-identifier>
 <name>receiver@foo.com</name>
 <addresses>
 <url>http://foo.com/acc</url>
 </addresses>
 </agent-identifier>
 </to>
 <from>
 <agent-identifier>
 <name>sender@bar.com</name>
 <addresses>
 <url>http://bar.com/acc</url>
 </addresses>
 </agent-identifier>
 </from>

 <acl-representation>fipa.acl.rep.xml.std</acl-representation>

 <date>20000508T042651481</date>

 <encrypted>no encryption</encrypted>

 <received>
 <received-by value="http://foo.com/acc" />
 <received-date value="20000508T042651481" />
 <received-id value="123456789" />
 </received>
 </params>
</envelope>

Using the bit-efficient representation, the envelope becomes:

0xfe 0x00 0x97 0x12 0x20 0x31 0x11 0x06 0x19 0x15 0x37 0x62 0x59 0x20 0x02 0x03 0x02
‘r’ ‘e’ ‘c’ ‘e’ ‘i’ ‘v’ ‘e’ ‘r’ ‘@’ ‘f’ ‘o’ ‘o’ ‘.’ ‘c’ ‘o’ ‘m’ 0x00
0x02 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’
‘c’ ‘c’ 0x00 0x01 0x01 0x02 ‘s’ ‘e’ ‘n’ ‘d’ ‘e’ ‘r’ ‘@’ ‘b’ ‘a’ ‘r’ ‘.’
‘c’ ‘o’ ‘m’ 0x00 0x02 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’
‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ 0x00 0x01 0x01 0x08 ‘n’ ‘o’ ‘ ’ ‘e’ ‘n’ ‘c’ ‘r’
‘y’ ‘p’ ‘t’ ‘i’ ‘o’ ‘n’ 0x00 0x0a ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘b’ ‘a’
‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ 0x00 0x20 0x31 0x11 0x06 0x19 0x15 0x37
0x62 0x59 0x20 0x03 ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ 0x00 0x01

The length of the original message is about 620 bytes and the encoded result is 151 bytes giving a compression ratio of
about 4:1.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 8

2. Here is an example that covers all aspects of an envelope.

<?xml version="1.0"?>
<envelope>
 <params index="1">
 <to>
 <agent-identifier>
 <name>receiver@foo.com</name>
 <addresses>
 <url>http://foo.com/acc</url>
 </addresses>
 <resolvers>
 <agent-identifier>
 <name>resolver@bar.com</name>
 <addresses>
 <url>http://bar.com/acc1</url>
 <url>http://bar.com/acc2</url>
 <url>http://bar.com/acc3</url>
 </addresses>
 </agent-identifier>
 </resolvers>
 </agent-identifier>
 </to>

 <from>
 <agent-identifier>
 <name>sender@bar.com</name>
 <addresses>
 <url>http://bar.com/acc</url>
 </addresses>
 <resolvers>
 <agent-identifier>
 <name>resolver@foobar.com</name>
 <addresses>
 <url>http://foobar.com/acc1</url>
 <url>http://foobar.com/acc2</url>
 <url>http://foobar.com/acc3</url>
 </addresses>
 </agent-identifier>
 </resolvers>
 </agent-identifier>
 </from>

 <comments>No comments!</comments>

 <acl-representation>fipa.acl.rep.xml.std</acl-representation>

 <payload-encoding>US-ASCII</payload-encoding>

 <date>20000508T042651481</date>

 <encrypted>no encryption</encrypted>

 <intended-receiver>
 <agent-identifier>
 <name>intendedreceiver@foobar.com</name>

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 9

 <addresses>
 <url>http://foobar.com/acc1</url>
 <url>http://foobar.com/acc2</url>
 <url>http://foobar.com/acc3</url>
 </addresses>
 <resolvers>
 <agent-identifier>
 <name>resolver@foobar.com</name>
 <addresses>
 <url>http://foobar.com/acc1</url>
 <url>http://foobar.com/acc2</url>
 <url>http://foobar.com/acc3</url>
 </addresses>
 <resolvers>
 <agent-identifier>
 <name>resolver@foobar.com</name>
 <addresses>
 <url>http://foobar.com/acc1</url>
 <url>http://foobar.com/acc2</url>
 <url>http://foobar.com/acc3</url>
 </addresses>
 </agent-identifier>
 </resolvers>
 </agent-identifier>
 </resolvers>
 </agent-identifier>
 </intended-receiver>

 <received>
 <received-by value="http://foo.com/acc" />
 <received-from value="http://foobar.com/acc" />
 <received-date value="20000508T042651481" />
 <received-id value="123456789" />
 <received-via value="http://bar.com/acc" />
 </received>

 </params>

</envelope>

Using the bit-efficient representation, the envelope becomes:

0xfe 0x01 0xea 0x12 0x20 0x31 0x11 0x06 0x19 0x15 0x37 0x62 0x59 0x20 0x02 0x02 ‘r’
‘e’ ‘c’ ‘e’ ‘i’ ‘v’ ‘e’ ‘r’ ‘@’ ‘f’ ‘o’ ‘o’ ‘.’ ‘c’ ‘o’ ‘m’ 0x00 0x02
‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’
‘c’ 0x00 0x01 0x03 0x02 ‘s’ ‘e’ ‘n’ ‘d’ ‘e’ ‘r’ ‘@’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’
‘o’ ‘m’ 0x00 0x02 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’
‘m’ ‘/’ ‘a’ ‘c’ ‘c’ 0x00 0x01 0x07 ‘U’ ‘S’ ‘-’ ‘A’ ‘S’ ‘C’ ‘I’ ‘I’ 0x00
0x08 ‘n’ ‘o’ ‘ ’ ‘e’ ‘n’ ‘c’ ‘r’ ‘y’ ‘p’ ‘t’ ‘i’ ‘o’ ‘n’ 0x00 0x01 0x09
0x02 ‘i’ ‘n’ ‘t’ ‘e’ ‘n’ ‘d’ ‘e’ ‘d’ ‘r’ ‘e’ ‘c’ ‘e’ ‘i’ ‘v’ ‘e’ ‘r’
‘@’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ 0x00 0x02 ‘h’ ‘t’ ‘t’ ‘p’
‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’
‘1’ 0x00 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’
‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘2’ 0x00 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’
‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘3’ 0x00 0x01 0x03 0x02

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 10

‘r’ ‘e’ ‘s’ ‘o’ ‘l’ ‘v’ ‘e’ ‘r’ ‘@’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’
‘o’ ‘m’ 0x00 0x02 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’
‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘1’ 0x00 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’
‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘2’ 0x00 ‘h’
‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’
‘a’ ‘c’ ‘c’ ‘3’ 0x00 0x01 0x03 0x02 ‘r’ ‘e’ ‘s’ ‘o’ ‘l’ ‘v’ ‘e’ ‘r’ ‘@’
‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ 0x00 0x02 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’
‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘1’
0x00 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’
‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘2’ 0x00 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’
‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘3’ 0x00 0x01 0x01 0x0a ‘h’
‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’
0x00 0x20 0x31 0x11 0x06 0x19 0x15 0x37 0x62 0x59 0x20 0x02 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’
‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ 0x00
0x03 ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ 0x00 0x01 0x01 0x04 ‘h’ ‘t’ ‘t’
‘p’ ‘:’ ‘/’ ‘/’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ 0x00 0x01

The length of the original message is about 2400 bytes and the encoded result is 490 bytes giving a compression ratio of
about 5:1.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 11

4 References
[FIPA00067] FIPA Agent Message Transport Service Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00067/
[FIPA00069] FIPA ACL Message Representation in Bit-Efficient Encoding Specification. Foundation for Intelligent

Physical Agents, 2000.
 http://www.fipa.org/specs/fipa00069/
[FIPA00070] FIPA ACL Message Representation in String Specification. Foundation for Intelligent Physical Agents,

2000.
http://www.fipa.org/specs/fipa00070/

[FIPA00071] FIPA ACL Message Representation in XML Specification. Foundation for Intelligent Physical Agents,
2000.
http://www.fipa.org/specs/fipa00071/

